Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

A new concept of fibroblast dynamics in post–myocardial infarction remodeling
Thomas Eschenhagen
Thomas Eschenhagen
Published April 16, 2018
Citation Information: J Clin Invest. 2018;128(5):1731-1733. https://doi.org/10.1172/JCI121079.
View: Text | PDF
Commentary

A new concept of fibroblast dynamics in post–myocardial infarction remodeling

  • Text
  • PDF
Abstract

The identity and function of the fibroblast, a highly prevalent cell type in the heart, have remained poorly defined. Recent faithful genetic lineage–tracing studies revealed that during development, the cardiac fibroblasts are derived from the epicardium and the endothelium, whereas in the adult heart, they constitute the cardiac injury–responsive resident fibroblast. In the current issue of the JCI, Molkentin and colleagues decipher the time course and mechanism of the fibroblast in response to myocardial infarction (MI). The model they propose is surprisingly simple and clear. It consists of three major phases. First, fibroblasts in the ischemic area die. Second, surrounding fibroblasts proliferate and migrate into the spaces created by dying cardiomyocytes over a few days. The new fibroblasts in the scar are activated and adopt a smooth muscle actin– and periostin-positive “myofibroblast” phenotype, which appears to last as long as the scar is not mature (~10 days after MI). In the third phase, initially proliferating myofibroblasts lose smooth muscle actin expression and convert to a nonproliferating, matrix-producing phenotype with a newly acquired tendon gene signature. Interestingly, this state appears to differ from that of quiescent fibroblasts in the uninjured heart, as it is resistant to proliferative stimuli. These cells are therefore termed “matrifibrocytes,” a novel category whose study will certainly further advance the field.

Authors

Thomas Eschenhagen

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 451 88
PDF 113 21
Citation downloads 68 0
Totals 632 109
Total Views 741
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts