Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Ube3a reinstatement mitigates epileptogenesis in Angelman syndrome model mice
Bin Gu, … , Serena M. Dudek, Benjamin D. Philpot
Bin Gu, … , Serena M. Dudek, Benjamin D. Philpot
Published October 23, 2018
Citation Information: J Clin Invest. 2019;129(1):163-168. https://doi.org/10.1172/JCI120816.
View: Text | PDF
Concise Communication Neuroscience

Ube3a reinstatement mitigates epileptogenesis in Angelman syndrome model mice

  • Text
  • PDF
Abstract

Angelman syndrome (AS) is a neurodevelopmental disorder in which epilepsy is common (~90%) and often refractory to antiepileptics. AS is caused by mutation of the maternal allele encoding the ubiquitin protein ligase E3A (UBE3A), but it is unclear how this genetic insult confers vulnerability to seizure development and progression (i.e., epileptogenesis). Here, we implemented the flurothyl kindling and retest paradigm in AS model mice to assess epileptogenesis and to gain mechanistic insights owed to loss of maternal Ube3a. AS model mice kindled similarly to wild-type mice, but they displayed a markedly increased sensitivity to flurothyl-, kainic acid–, and hyperthermia-induced seizures measured a month later during retest. Pathological characterization revealed enhanced deposition of perineuronal nets in the dentate gyrus of the hippocampus of AS mice in the absence of overt neuronal loss or mossy fiber sprouting. This pro-epileptogenic phenotype resulted from Ube3a deletion in GABAergic but not glutamatergic neurons, and it was rescued by pancellular reinstatement of Ube3a at postnatal day 21 (P21), but not during adulthood. Our results suggest that epileptogenic susceptibility in AS patients is a consequence of the dysfunctional development of GABAergic circuits, which may be amenable to therapies leveraging juvenile reinstatement of UBE3A.

Authors

Bin Gu, Kelly E. Carstens, Matthew C. Judson, Katherine A. Dalton, Marie Rougié, Ellen P. Clark, Serena M. Dudek, Benjamin D. Philpot

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts