Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A lysosomal protease enters the death scene
Guy S. Salvesen
Guy S. Salvesen
Published January 1, 2001
Citation Information: J Clin Invest. 2001;107(1):21-23. https://doi.org/10.1172/JCI11829.
View: Text | PDF
Commentary

A lysosomal protease enters the death scene

  • Text
  • PDF
Abstract

Authors

Guy S. Salvesen

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Two initiation pathways, triggered by separate events, converge to execu...
Two initiation pathways, triggered by separate events, converge to execute apoptosis. The extrinsic pathway (lighter shading) encompasses the extracellular ligation of death receptors by their cognate ligands, resulting in receptor clustering, adapter recruitment, and activation of the apical protease caspase 8. Thus, death receptors act as a conduit for the transmission of extracellular death signals into the cell’s interior. The intrinsic pathway (darker shading) responds primarily to cellular stress (ionizing radiation, cytotoxic drugs, etc.), with the mitochondrion acting as an important integrator. Pro- and antiapoptotic members of the Bcl-2 family (Bax and Bcl-2 serve as examples) regulate the lethal stress-response threshold. Activation of the apical protease caspase 9 occurs when it is driven into an active conformation by its cofactor Apaf-1, which itself requires prior binding to cytochrome c. Both pathways activate the executioner proteases caspases 3 and 7. The proapoptotic Bcl-2 family member Bid is at an intersection between the two initiation pathways. An important feature of the extrinsic pathway is that several receptors, in response to their cognate ligands, converge their death signals by activating caspase 8. Now, new evidence (11) proposes a role for the lysosomal protease cathepsin B in the extrinsic pathway triggered by TNF-α.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts