Papillary and surface micropuncture were used to study the handling of ammonium and the formation of net acid by surface nephrons, deep nephrons, and the terminal segment of collecting duct (CD) after renal mass was reduced by two-thirds. Net acid excretion by the remnant kidney (RK) was significantly reduced, averaging 794±81 neq/min (SE) compared with 1,220±105 neq/min after sham operation (P < 0.001), due to a decrease in ammonium excretion (494±54 vs. 871±79 nmol/min in controls, P < 0.001). Urinary pH and titratable acid excretion were not different in the two groups of animals. After RK formation, ammonium delivery to the end of the proximal tubule increased nearly threefold and averaged 66.2±5.6 compared with 18.4±2.9 pmol/min in controls, (P < 0.001). This greater delivery of ammonium was primarily due to renal tubule entry rather than to changes in the filtered load and was only partially related to the differences in flow rate. Ammonium processing by deep nephrons was profoundly affected by a reduction in renal mass. Although absolute delivery of ammonium was greater to the bend of Henle's loop (BHL), the difference could be accounted for on the basis of an increase in nephron size. Thus, fractional delivery (FDNH+4) to this site was not different for the two groups of animals, averaging 1,567±180% in controls and 1,400±181% in the group with the RK. Hydrogen secretion in the proximal segments of deep and surface nephrons did not increase in proportion to the decrease in renal mass and as a consequence bicarbonate delivery to the end of the proximal tubule of surface nephrons and to the BHL of deep nephrons was increased.
John Buerkert, Daniel Martin, David Trigg, Eric Simon
Usage data is cumulative from July 2024 through July 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 207 | 1 |
110 | 8 | |
Scanned page | 656 | 4 |
Citation downloads | 62 | 0 |
Totals | 1,035 | 13 |
Total Views | 1,048 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.