Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Amendment history:
  • Correction (April 1982)

Free access | 10.1172/JCI110451

Mechanisms of Epinephrine-induced Glucose Intolerance in Normal Humans: ROLE OF THE SPLANCHNIC BED

Luigi Saccà, Carlo Vigorito, Marco Cicala, Biagio Ungaro, and Robert S. Sherwin

Institute of Medical Pathology, Second School of Medicine, University of Naples, Italy

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Saccà, L. in: PubMed | Google Scholar

Institute of Medical Pathology, Second School of Medicine, University of Naples, Italy

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Vigorito, C. in: PubMed | Google Scholar

Institute of Medical Pathology, Second School of Medicine, University of Naples, Italy

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Cicala, M. in: PubMed | Google Scholar

Institute of Medical Pathology, Second School of Medicine, University of Naples, Italy

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Ungaro, B. in: PubMed | Google Scholar

Institute of Medical Pathology, Second School of Medicine, University of Naples, Italy

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Sherwin, R. in: PubMed | Google Scholar

Published February 1, 1982 - More info

Published in Volume 69, Issue 2 on February 1, 1982
J Clin Invest. 1982;69(2):284–293. https://doi.org/10.1172/JCI110451.
© 1982 The American Society for Clinical Investigation
Published February 1, 1982 - Version history
View PDF
Abstract

To evaluate the role of the splanchnic bed in epinephrine-induced glucose intolerance, we selectively assessed the components of net splanchnic glucose balance, i.e., splanchnic glucose uptake and hepatic glucose production, and peripheral glucose uptake by combining infusion of [3-3H]glucose with hepatic vein catheterization. Normal humans received a 90-min infusion of either glucose alone (6.5 mg/kg−1 per min−1) or epinephrine plus glucose at two dose levels: (a) in amounts that simulated the hyperglycemia seen with glucose alone (3.0 mg/kg−1 per min−1); and (b) in amounts identical to the control study. During infusion of glucose alone, blood glucose rose twofold, insulin levels and net posthepatic insulin release increased three- to fourfold, and net splanchnic glucose output switched from a net output (1.65±0.12 mg/kg−1 per min−1) to a net uptake (1.56±0.18). This was due to a 90-95% fall (P < 0.001) in hepatic glucose production and a 100% rise (P < 0.001) in splanchnic glucose uptake (from 0.86±0.14 to 1.71±0.12 mg/kg−1 per min−1), which in the basal state amounted to 30-35% of total glucose uptake. Peripheral glucose uptake rose by 170-185% (P < 0.001). When epinephrine was combined with the lower glucose dose, blood glucose, insulin release, and hepatic blood flow were no different from values observed with glucose alone. However, hepatic glucose production fell only 40-45% (P < 0.05 vs. glucose alone) and, most importantly, the rise in splanchnic glucose uptake was totally blocked. As a result, splanchnic glucose clearance fell by 50% (P < 0.05), and net splanchnic glucose uptake did not occur. The rise in peripheral glucose uptake was also reduced by 50-60% (P < 0.001). When epinephrine was added to the same dose of glucose used in the control study, blood glucose rose twofold higher (P < 0.001). The initial rise in splanchnic glucose uptake was totally prevented; however, beyond 30 min, splanchnic glucose uptake increased, reaching levels seen in the control study when severe hyperglycemia occurred. Splanchnic glucose clearance, nevertheless, remained suppressed throughout the entire study (40%-50%, P < 0.01).

It is concluded that (a) the splanchnic bed accounts for one-third of total body glucose uptake in the basal state in normal humans; (b) epinephrine markedly inhibits the rise in splanchnic glucose uptake induced by infusion of glucose; and (c) this effect does not require a fall in insulin and is modulated by the level of hyperglycemia. Our data indicate that the splanchnic bed is an important site of glucose uptake in post-absorptive humans and that epinephrine impairs glucose tolerance by suppressing glucose uptake by both splanchnic and peripheral tissues, as well as by its well known stimulatory effect on endogenous glucose production.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 284
page 284
icon of scanned page 285
page 285
icon of scanned page 286
page 286
icon of scanned page 287
page 287
icon of scanned page 288
page 288
icon of scanned page 289
page 289
icon of scanned page 290
page 290
icon of scanned page 291
page 291
icon of scanned page 292
page 292
icon of scanned page 293
page 293
Version history
  • Version 1 (February 1, 1982): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts