Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI110423

Uroporphyrin I Stimulation of Collagen Biosynthesis in Human Skin Fibroblasts: A UNIQUE DARK EFFECT OF PORPHYRIN

George Varigos, John R. Schiltz, and David R. Bickers

Department of Dermatology, Case Western Reserve University, Ohio 44106

Department of Oral Biology, Case Western Reserve University, Ohio 44106

Dermatology Section, Cleveland Veterans Administration Hospital, University Hospitals of Cleveland, Ohio 44106

Find articles by Varigos, G. in: PubMed | Google Scholar

Department of Dermatology, Case Western Reserve University, Ohio 44106

Department of Oral Biology, Case Western Reserve University, Ohio 44106

Dermatology Section, Cleveland Veterans Administration Hospital, University Hospitals of Cleveland, Ohio 44106

Find articles by Schiltz, J. in: PubMed | Google Scholar

Department of Dermatology, Case Western Reserve University, Ohio 44106

Department of Oral Biology, Case Western Reserve University, Ohio 44106

Dermatology Section, Cleveland Veterans Administration Hospital, University Hospitals of Cleveland, Ohio 44106

Find articles by Bickers, D. in: PubMed | Google Scholar

Published January 1, 1982 - More info

Published in Volume 69, Issue 1 on January 1, 1982
J Clin Invest. 1982;69(1):129–135. https://doi.org/10.1172/JCI110423.
© 1982 The American Society for Clinical Investigation
Published January 1, 1982 - Version history
View PDF
Abstract

Porphyria cutanea tarda and erythropoietic porphyria are disorders of heme synthesis that originate in the liver and bone marrow, respectively. Each is characterized by increased accumulation of uroporphyrin, I, by cutaneous photosensitivity, and in some patients by indurated plaques and scarring that resemble scleroderma. These scleroderma-like lesions occur in light-exposed and light-protected body areas. In these studies we evaluated the role of uroporphyrin I and of light in evoking the scleroderma-like cutaneous changes. Normal human skin fibroblasts were exposed to uroporphyrin I and to 400 nm radiation and the effect of these agents on collagen accumulation by the cells was determined. Radioactive tracer studies showed that uroporphyrin I caused a specific increase in the accumulation of newly synthesized collagen by fibroblast monolayer cultures, as verified by [3H]hydroxyproline and collagenase digestion assays. Collagen accumulation was stimulated 1.5- to 2.7-fold by uroporphyrin I, whereas noncollagenous protein accumulation was unchanged. The increased collagen accumulation was time and uroporphyrin I-concentration-dependent, and occurred both in the presence or absence of ultraviolet light exposure. Further studies demonstrated that the increased accumulation was not the result of decreased rates of collagen degradation nor was it due to changes in cell population growth parameters (generation times and saturation densities). No changes in morphology of the treated cells occurred. These studies indicate that porphyrins possess previously undemonstrated biological effects that are independent of their photosensitizing properties. This novel dark effect of uroporphyrin I may account for the sclerodermatous lesions seen in the skin of patients with porphyria cutanea tarda and erythropoietic porphyria.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 129
page 129
icon of scanned page 130
page 130
icon of scanned page 131
page 131
icon of scanned page 132
page 132
icon of scanned page 133
page 133
icon of scanned page 134
page 134
icon of scanned page 135
page 135
Version history
  • Version 1 (January 1, 1982): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts