Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Clearance of Thrombin from Circulation in Rabbits by High-affinity Binding Sites on Endothelium: POSSIBLE ROLE IN THE INACTIVATION OF THROMBIN BY ANTITHROMBIN III
Pete Lollar, Whyte G. Owen
Pete Lollar, Whyte G. Owen
Published December 1, 1980
Citation Information: J Clin Invest. 1980;66(6):1222-1230. https://doi.org/10.1172/JCI109973.
View: Text | PDF

Clearance of Thrombin from Circulation in Rabbits by High-affinity Binding Sites on Endothelium: POSSIBLE ROLE IN THE INACTIVATION OF THROMBIN BY ANTITHROMBIN III

  • Text
  • PDF
Abstract

The clearance of 125I-thrombin and diisopropylphosphoryl-125I-thrombin (DIP-thrombin) from the circulation in rabbits was studied. When given either intraarterially or intravenously, DIP-thrombin, which is active-site blocked, was ∼90% cleared from the circulation by 1 min, the time of earliest sampling, indicating a large first-pass effect. DIP-thrombin given intravenously is found predominantly in the lungs, whereas DIP-thrombin injected into the aortic arch is distributed diffusely in approximate proportion to the blood supply. Renal artery, femoral artery, ear artery, left atrium, and portal vein infusions demonstrate that kidney, muscle, ear, heart, and liver, respectively, can remove DIP-thrombin from the circulation. These data imply that the clearance of DIP-thrombin is not a function of a specific organ but of the vascular bed per se. The clearance of DIP-thrombin was reversible since injection of 0.5 mg of unlabeled DIP-thrombin 10 min after the injection of a tracer dose of DIP-125I-thrombin resulted in the rapid reappearance of the DIP-125I-thrombin into the circulation. In addition, the clearance of DIP-thrombin was saturable, i.e., clearance of DIP-125I-thrombin was inhibited by unlabeled DIP-thrombin in a dose-dependent fashion. In vivo Scatchard analysis of the saturation of the clearance process demonstrated that DIP-thrombin can be removed by binding to high-affinity binding sites, since dissociation constants (KD) of 10 and 13 nM were obtained for human and bovine DIP-thrombin, respectively.

Authors

Pete Lollar, Whyte G. Owen

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts