Previous attempts to correlate in vivo pyridoxine-responsiveness with in vitro assays of cystathionine β-synthase activity in synthase-deficient homocystinuric patients have been only partially successful. All such studies, however, have been conducted with extracts of cultured skin fibroblasts grown in medium containing a high concentration (1,000 ng/ml) of pyridoxal. Having recently shown that such growth conditions may obscure important aspects of enzyme-coenzyme interactions by saturating most synthase molecules with their cofactor, pyridoxal 5′-phosphate, we have established conditions for growth of cells in pyridoxal-free medium. Under these conditions, intracellular pyridoxal 5′-phosphate fell by >95%, and saturation of cystathionine β-synthase apoenzyme with pyridoxal 5′-phosphate decreased from a predepletion value of 70% to <10%. When such depleted cells were grown in media containing pyridoxal concentrations ranging from 0 to 1,000 ng/ml, cellular pyridoxal 5′-phosphate reached a maximum of 30 ng/mg cell protein at a medium pyridoxal concentration of 100 ng/ml. Maximal saturation of aposynthase with coenzyme in control cells was reached at a medium pyridoxal concentration of 10 ng/ml. In contrast, maximal saturation of residual aposynthase in cells from an in vivo responsive patient was achieved at a medium pyridoxal concentration of 25-50 ng/ml, whereas that from cells from an in vivo unresponsive patient was reached at 100 ng/ml. Estimates of the affinity of control and mutant cystathionine β-synthase for pyridoxal 5′-phosphate in cell extracts supported the differences observed in intact cells. The apparent Km of cystathionine β-synthase for pyridoxal 5′-phosphate in extracts of depleted cells from four in vivo-responsive patients was two to four times that of control. In contrast, the Km for pyridoxal 5′-phosphate in two lines from in vivo nonresponsive patients was 16- and 63-fold normal. These results suggest that cystathionine β-synthase activity in cells from patients containing a mutant enzyme with a moderately reduced affinity for pyridoxal 5′-phosphate can be increased by pyridoxine supplements in vivo, whereas that from patients whose enzyme has a more dramatically reduced affinity for the coenzyme cannot be so modulated because of limits on the capacity of such cells to accumulate and retain pyridoxal 5′-phosphate.
Mark H. Lipson, Jan Kraus, Leon E. Rosenberg
Usage data is cumulative from August 2024 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 179 | 13 |
48 | 14 | |
Scanned page | 247 | 0 |
Citation downloads | 77 | 0 |
Totals | 551 | 27 |
Total Views | 578 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.