Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI109707

Resistance of Gram-negative Bacteria to Purified Bactericidal Leukocyte Proteins: RELATION TO BINDING AND BACTERIAL LIPOPOLYSACCHARIDE STRUCTURE

Jerrold Weiss, Susan Beckerdite-Quagliata, and Peter Elsbach

Department of Medicine, New York University School of Medicine, New York 10016

Find articles by Weiss, J. in: PubMed | Google Scholar

Department of Medicine, New York University School of Medicine, New York 10016

Find articles by Beckerdite-Quagliata, S. in: PubMed | Google Scholar

Department of Medicine, New York University School of Medicine, New York 10016

Find articles by Elsbach, P. in: PubMed | Google Scholar

Published March 1, 1980 - More info

Published in Volume 65, Issue 3 on March 1, 1980
J Clin Invest. 1980;65(3):619–628. https://doi.org/10.1172/JCI109707.
© 1980 The American Society for Clinical Investigation
Published March 1, 1980 - Version history
View PDF
Abstract

The sensitivity or resistance of gram-negative bacteria to antibacterial systems appears to be related to the length of the saccharide chain of the bacterial envelope lipopolysaccharides (LPS). To explore this relationship further, we made use of two bactericidal, membrane-active cationic proteins, recently purified to near homogeneity, one from human and one from rabbit polymorphonuclear leukocytes (PMN). We have studied the effects of these two closely similar proteins on strains of Salmonella typhimurium and Escherichia coli, each separate strain differing in the saccharide chain length of its outer membrane LPS. Binding of these proteins to the bacterial outer membrane is required for killing, and is accompanied by an almost immediate increase in outer membrane permeability to normally impermeant actinomycin D. Sensitivity to the bactericidal and permeability-increasing activities of the human and rabbit proteins increases with decreasing LPS-saccharide chain length (chemotype: [S < Ra < Rb3 < Rc < Rd1]). S. typhimurium G-30 and E. coli J5, mutant strains lacking UDP-galactose-4-epimerase, synthesize incomplete LPS (chemotype Rc) when grown without galactose, and are then as sensitive to both PMN proteins as the S. typhimurium strains 395 R10 (Rd1) and R5 (Rb3). However, when these mutants are grown with galactose, they synthesize complete LPS (chemotype S) and exhibit nearly the same relative insensitivity as the smooth strains S. typhimurium 395 MS and E. coli 0111:B4.

The differences among strains in sensitivity to the effects of the proteins on bacterial viability and permeability correspond to differences in bacterial binding of these PMN proteins. Thus, at protein concentrations that produce maximal antibacterial activity toward the rough bacteria, but little or no activity toward the smooth strains, rough bacteria bind from 3- to 10-fold more protein (S. typhimurium 395 R10; S. typhimurium G-30, and E. coli J5 [grown without galactose]) than do the smooth bacteria (S. typhimurium 395 MS; E. coli 0111:B4; S. typhimurium G-30 and E. coli J5 [grown with galactose]). These findings suggest that bacterial sensitivity or resistance to these purified bactericidal PMN proteins is determined by the binding properties of the outer membrane, which in turn depends upon the LPS-saccharide chain length.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 619
page 619
icon of scanned page 620
page 620
icon of scanned page 621
page 621
icon of scanned page 622
page 622
icon of scanned page 623
page 623
icon of scanned page 624
page 624
icon of scanned page 625
page 625
icon of scanned page 626
page 626
icon of scanned page 627
page 627
icon of scanned page 628
page 628
Version history
  • Version 1 (March 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts