Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI109599

Eosinophils versus Neutrophils in Host Defense: KILLING OF NEWBORN LARVAE OF TRICHINELLA SPIRALIS BY HUMAN GRANULOCYTES IN VITRO

David A. Bass and Pamela Szejda

Department of Medicine, Bowman Gray School of Medicine, Winston-Salem, North Carolina 27103

Find articles by Bass, D. in: PubMed | Google Scholar

Department of Medicine, Bowman Gray School of Medicine, Winston-Salem, North Carolina 27103

Find articles by Szejda, P. in: PubMed | Google Scholar

Published November 1, 1979 - More info

Published in Volume 64, Issue 5 on November 1, 1979
J Clin Invest. 1979;64(5):1415–1422. https://doi.org/10.1172/JCI109599.
© 1979 The American Society for Clinical Investigation
Published November 1, 1979 - Version history
View PDF
Abstract

Eosinophil leukocytes have been reported to have a major role in host defense against invasive, migratory phases of helminth infestations, yet the relative larvicidal abilities of eosinophils and neutrophils have not been thoroughly examined. This study examined the killing of newborn (migratory phase) larvae of Trichinella spiralis during incubation by human granulocytes in vitro. The assay employed cultue of larvae with cells, sera, and reagents in microtiter wells with direct counting of surviving larvae after incubation. Killed larvae appeared to be lysed. Verification of the microplate assay was obtained by demonstrating complete loss of infectivity of larvae incubated with leukocytes and immune serum. In the presence of optimal immune serum concentrations, purified neutrophils or eosinophils achieved ≥95% killing of larvae at cell:larva ratios of 2,000:1 or greater. Fresh normal serum prompted slight (19%) killing by leukocytes at a cell:larva ratio of 9,000:1. Cells plus heat-inactivated normal serum and all sera preparations in the absence of leukocytes killed <8% of the larvae. The activity of immune serum was opsonic. Cells adhered to larvae that had been preincubated in immune serum, and immunofluorescent studies indicated that such preopsonized larvae were coated with immunoglobulin (Ig)G. However, preopsonized larvae lost opsonic activity and surface IgG during incubation for 3 h in medium lacking immune serum.

The rate of killing was dependent on the cell:larva ratio; at high leukocyte concentrations (4,200:1), 99% were killed within 7 h; at lower cell:larva ratios, killing increased steadily during a 20-h incubation period. Killing was inhibited by 20 μg catalase, 5 μg/ml cytochalasin B, or 5μM colchicine, but was unchanged by superoxide dismutase and was enhanced by azide or cyanide. Leukocytes from a patient with chronic granulomatous disease, lacking ability to mount a normal oxidative response, demonstrated a markedly suppressed larvicidal effect.

The data indicate that neutrophils are at least as effective as eosinophils in the killing of newborn larvae of T. spiralis. The killing appeared to be mediated by the oxidative metabolic burst with its generation of hydrogen peroxide.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1415
page 1415
icon of scanned page 1416
page 1416
icon of scanned page 1417
page 1417
icon of scanned page 1418
page 1418
icon of scanned page 1419
page 1419
icon of scanned page 1420
page 1420
icon of scanned page 1421
page 1421
icon of scanned page 1422
page 1422
Version history
  • Version 1 (November 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts