To assess potential abnormalities in collagen metabolism in systemic scleroderma, skin fibroblast lines from patients with this disease were established and compared to control cell lines derived from healthy subjects. For studies on the biosynthesis of procollagen, the cells were incubated with [14C]proline in a medium supplemented with ascorbic acid and β-aminopropionitrile, and the synthesis of nondialyzable [14C]hydroxyproline, in relation to DNA or cell protein, was taken as an index of procollagen formation. Five of eight scleroderma fibroblast cell lines demonstrated procollagen biosynthesis rates significantly higher than the controls, and the mean rate of procollagen synthesis by scleroderma fibroblasts was about twice that of the control cells. Control experiments demonstrated that the specific activity of the intracellular free proline was not different in scleroderma and control fibroblasts, and the mean population doubling times of the scleroderma and the control fibroblast cell lines were the same. The relative synthesis of the genetically distinct procollagens was examined by isolating type I and type III procollagens from the cell culture medium using DEAE-cellulose chromatography. The ratios of type I/III procollagens in scleroderma cell lines did not differ from the controls. The helical stability of the collagenous portion of type I and type III procollagens, estimated by the resistance of 14C-collagen to limited proteolytic digestion with pepsin under nondenaturing conditions, was the same in both scleroderma and control cultures. The capacity of the cells to synthesize enzymatically active and immunologically reacting collagenase was also studied; no marked differences in these parameters could be observed. The results suggest that cultured skin fibroblasts from patients with scleroderma demonstrate a metabolic abnormality expressed as increased synthesis of type I and type III procollagens in a normal ratio. This abnormality may play a role in the excessive accumulation of collagen in the skin and other organs affected in scleroderma.
Jouni Uitto, Eugene A. Bauer, Arthur Z. Eisen
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 203 | 2 |
338 | 13 | |
Scanned page | 409 | 4 |
Citation downloads | 61 | 0 |
Totals | 1,011 | 19 |
Total Views | 1,030 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.