Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Rapid Publication Free access | 10.1172/JCI109309

Platelet and Blood Vessel Arachidonate Metabolism and Interactions

Philip Needleman, Angela Wyche, and Amiram Raz

Department of Pharmacology, Washington University Medical School, St. Louis, Missouri 63110

Find articles by Needleman, P. in: JCI | PubMed | Google Scholar

Department of Pharmacology, Washington University Medical School, St. Louis, Missouri 63110

Find articles by Wyche, A. in: JCI | PubMed | Google Scholar

Department of Pharmacology, Washington University Medical School, St. Louis, Missouri 63110

Find articles by Raz, A. in: JCI | PubMed | Google Scholar

Published February 1, 1979 - More info

Published in Volume 63, Issue 2 on February 1, 1979
J Clin Invest. 1979;63(2):345–349. https://doi.org/10.1172/JCI109309.
© 1979 The American Society for Clinical Investigation
Published February 1, 1979 - Version history
View PDF
Abstract

Exogenous arachidonate addition to intact platelets, in the absence or the presence of blood vessel microsomes, results in the production of thromboxane B2 (the stable degradation product of thromboxane A2) only. Prostaglandin (PG) endoperoxides are released from intact platelets only when thromboxane synthetase is inhibited. Thus, addition of exogenous arachidonate to imidazole-pretreated platelets in the presence of bovine aorta microsomes (source of prostacyclin synthetase) results predominantly in the synthesis of 6-keto-PGF1α (the stable degradation product of prostacyclin). Strips of intact aorta were removed from aspirin-treated rabbits, thus the isolated blood vessels were unable to convert endogenous or exogenous arachidonate to prostacyclin. Human platelets, with [14C]arachidonate-labeled phospholipids, adhered to the blood vessel segments and released some thromboxane B2. The subsequent addition of thrombin facilitated the release of endogenous arachidonate and thromboxane, but no labeled 6-keto-PGF1α was detectable. There is therefore no direct chemical evidence of PG-endoperoxide release from human platelets during either aggregation or adhesion, which therefore precludes the possibility that blood vessels use platelet PG-endoperoxide for prostacyclin synthesis. Imidazole inhibited the thromboxane synthetase in the labeled platelets, and thereafter thrombin stimulation resulted in the release of platelet-derived, labeled PG-endoperoxides that were converted to labeled prostacyclin by the vascular prostacyclin synthetase. The latter result suggests a potential antithrombotic therapeutic benefit might be achieved using an effective thromboxane synthetase inhibitor.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 345
page 345
icon of scanned page 346
page 346
icon of scanned page 347
page 347
icon of scanned page 348
page 348
icon of scanned page 349
page 349
Version history
  • Version 1 (February 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts