Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • Nuclear Receptors (Apr 2017)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Top
  • View PDF Adobe pdf file icon
  • Download citation information
  • Send a letter
  • License information
  • Standard abbreviations
  • Article usage
  • Citations to this article
  • Share this article
  • Need Help? E-mail the JCI
  • Top
  • Abstract
  • Version history
Advertisement

Rapid Publication Free access | 10.1172/JCI109309

Platelet and Blood Vessel Arachidonate Metabolism and Interactions

Philip Needleman, Angela Wyche, and Amiram Raz

Department of Pharmacology, Washington University Medical School, St. Louis, Missouri 63110

Find articles by Needleman, P. in: JCI | PubMed | Google Scholar

Department of Pharmacology, Washington University Medical School, St. Louis, Missouri 63110

Find articles by Wyche, A. in: JCI | PubMed | Google Scholar

Department of Pharmacology, Washington University Medical School, St. Louis, Missouri 63110

Find articles by Raz, A. in: JCI | PubMed | Google Scholar

First published February 1, 1979 - More info

Published in Volume 63, Issue 2 on February 1, 1979
J Clin Invest. 1979;63(2):345–349. https://doi.org/10.1172/JCI109309.
Copyright © 1979, The American Society for Clinical Investigation.

First published February 1, 1979 - Version history
Abstract

Exogenous arachidonate addition to intact platelets, in the absence or the presence of blood vessel microsomes, results in the production of thromboxane B2 (the stable degradation product of thromboxane A2) only. Prostaglandin (PG) endoperoxides are released from intact platelets only when thromboxane synthetase is inhibited. Thus, addition of exogenous arachidonate to imidazole-pretreated platelets in the presence of bovine aorta microsomes (source of prostacyclin synthetase) results predominantly in the synthesis of 6-keto-PGF1α (the stable degradation product of prostacyclin). Strips of intact aorta were removed from aspirin-treated rabbits, thus the isolated blood vessels were unable to convert endogenous or exogenous arachidonate to prostacyclin. Human platelets, with [14C]arachidonate-labeled phospholipids, adhered to the blood vessel segments and released some thromboxane B2. The subsequent addition of thrombin facilitated the release of endogenous arachidonate and thromboxane, but no labeled 6-keto-PGF1α was detectable. There is therefore no direct chemical evidence of PG-endoperoxide release from human platelets during either aggregation or adhesion, which therefore precludes the possibility that blood vessels use platelet PG-endoperoxide for prostacyclin synthesis. Imidazole inhibited the thromboxane synthetase in the labeled platelets, and thereafter thrombin stimulation resulted in the release of platelet-derived, labeled PG-endoperoxides that were converted to labeled prostacyclin by the vascular prostacyclin synthetase. The latter result suggests a potential antithrombotic therapeutic benefit might be achieved using an effective thromboxane synthetase inhibitor.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 345
page 345
icon of scanned page 346
page 346
icon of scanned page 347
page 347
icon of scanned page 348
page 348
icon of scanned page 349
page 349
Version history
  • Version 1 (February 1, 1979): No description

Article tools

  • View PDF Adobe pdf file icon
  • Download citation information
  • Send a letter
  • License information
  • Standard abbreviations
  • Article usage
  • Citations to this article
  • Share this article
  • Need Help? E-mail the JCI

Go to:

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2018 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts