Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI109170

The Regulation of Skeletal Muscle Alanine and Glutamine Formation and Release in Experimental Chronic Uremia in the Rat: SUBSENSITIVITY OF ADENYLATE CYCLASE AND AMINO ACID RELEASE TO EPINEPHRINE AND SEROTONIN

Alan J. Garber

Division of Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030

Division of Endocrinology and Metabolism, Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030

Find articles by Garber, A. in: PubMed | Google Scholar

Published September 1, 1978 - More info

Published in Volume 62, Issue 3 on September 1, 1978
J Clin Invest. 1978;62(3):633–641. https://doi.org/10.1172/JCI109170.
© 1978 The American Society for Clinical Investigation
Published September 1, 1978 - Version history
View PDF
Abstract

The mechanism of the increased alanine and glutamine formation and release from skeletal muscle in experimental uremia was investigated using epitrochlearis preparations from control and chronically uremic rats. In uremic muscle, insensitivity to epinephrine or serotonin suppression of alanine and glutamine release was observed. With control muscles, 1 nm or greater, epinephrine inhibited alanine and glutamine release, whereas with uremic muscles, epinephrine concentrations <1 μM did not alter amino acid release. Decreased alanine and glutamine release with 1 nM serotonin was observed in control muscles, but no inhibition was observed with concentrations <1 μM in uremic muscle. Muscle amino acid levels were the same in control and uremic muscles in the presence or absence of epinephrine or serotonin. The reutilization of released alanine by protein synthesis or oxidation to CO2 was not differentially affected by epinephrine in uremic muscles as compared with control muscle. Dibutyryl-cAMP inhibited amino acid release equally in uremic and control muscles. Epinephrine or serotonin increased cAMP levels two- to four-fold or more in control than in uremic muscle. Basal- and fluoride-stimulated adenylate cyclase activities were equal in uremic and control muscle homogenates and in membrane fractions, but 10 μM epinephrine-stimulated adenylate cyclase was reduced 30-60% with uremia. At any concentration of epinephrine (0.001—100 μM), the stimulation of membrane adenylate cyclase activity was one- to twofold greater with control membranes than with uremic muscle membranes. With either control or uremic muscle, peak adenylate cyclase activity was observed at 1 μM epinephrine.

These data indicate that skeletal muscle in chronic uremia acquires an insensitivity to the metabolic action of epinephrine or serotonin. This insensitivity may be attributable in part to the diminished increments in muscle cAMP levels produced by adrenergic and serotonergic agonists. The decreased cAMP levels may derive in turn from a decreased activity or subsensitization of the agonist-stimulated adenylate cyclase in uremic muscle.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 633
page 633
icon of scanned page 634
page 634
icon of scanned page 635
page 635
icon of scanned page 636
page 636
icon of scanned page 637
page 637
icon of scanned page 638
page 638
icon of scanned page 639
page 639
icon of scanned page 640
page 640
icon of scanned page 641
page 641
Version history
  • Version 1 (September 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts