Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Aminoglycoside-Inactivating Enzymes in Clinical Isolates of Streptococcus Faecalis: AN EXPLANATION FOR RESISTANCE TO ANTIBIOTIC SYNERGISM
Donald J. Krogstad, … , Christine Wennersten, Morton N. Swartz
Donald J. Krogstad, … , Christine Wennersten, Morton N. Swartz
Published August 1, 1978
Citation Information: J Clin Invest. 1978;62(2):480-486. https://doi.org/10.1172/JCI109149.
View: Text | PDF

Aminoglycoside-Inactivating Enzymes in Clinical Isolates of Streptococcus Faecalis: AN EXPLANATION FOR RESISTANCE TO ANTIBIOTIC SYNERGISM

  • Text
  • PDF
Abstract

Clinical isolates of enterococci (Streptococcus faecalis) with high-level resistance to both streptomycin and kanamycin (minimal inhibitory concentration >2,000 μg/ml), and resistant to synergism with penicillin and streptomycin or kanamycin were examined for aminoglycoside-inactivating enzymes. All of the 10 strains studied had streptomycin adenylyltransferase and neomycin phosphotransferase activities; the latter enzyme phosphorylated amikacin as well as its normal substrates, such as kanamycin. Substrate profiles of the neomycin phosphotransferase activity suggested that phosphorylation occurred at the 3′-hydroxyl position, i.e., aminoglycoside 3′-phosphotransferase. A transconjugant strain, which acquired high-level aminoglycoside resistance and resistance to antibiotic synergism after mating with a resistant clinical isolate, also acquired both enzyme activities. Quantitative phosphorylation of amikacin in vitro by a sonicate of the transconjugant strain inactivated the antibiotic, as measured by bioassay, and the phosphorylated drug failed to produce synergism when combined with penicillin against a strain sensitive to penicillin-amikacin synergism.

Authors

Donald J. Krogstad, Thomas R. Korfhagen, Robert C. Moellering Jr., Christine Wennersten, Morton N. Swartz

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts