Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI108919

Activity of [Des-Aspartyl1]-Angiotensin II and Angiotensin II in Man: DIFFERENCES IN BLOOD PRESSURE AND ADRENOCORTICAL RESPONSES DURING NORMAL AND LOW SODIUM INTAKE

Robert M. Carey, E. Darracott Vaughan Jr., Michael J. Peach, and Carlos R. Ayers

The Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22901

The Department of Urology, University of Virginia School of Medicine, Charlottesville, Virginia 22901

The Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22901

Find articles by Carey, R. in: PubMed | Google Scholar

The Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22901

The Department of Urology, University of Virginia School of Medicine, Charlottesville, Virginia 22901

The Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22901

Find articles by Vaughan, E. in: PubMed | Google Scholar

The Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22901

The Department of Urology, University of Virginia School of Medicine, Charlottesville, Virginia 22901

The Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22901

Find articles by Peach, M. in: PubMed | Google Scholar

The Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22901

The Department of Urology, University of Virginia School of Medicine, Charlottesville, Virginia 22901

The Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22901

Find articles by Ayers, C. in: PubMed | Google Scholar

Published January 1, 1978 - More info

Published in Volume 61, Issue 1 on January 1, 1978
J Clin Invest. 1978;61(1):20–31. https://doi.org/10.1172/JCI108919.
© 1978 The American Society for Clinical Investigation
Published January 1, 1978 - Version history
View PDF
Abstract

This study was designed to compare the effect of [des-Aspartyl1]-angiotensin II ([des-Asp]-A II) and angiotensin II (A II) on blood pressure and aldosterone production in man under conditions of normal and low sodium (Na) intake. Seven normal male subjects in balance on constant normal Na intake (UNa V 160.3±5.0 meq/24 h) for 5 days received A II and [des-Asp]-A II infusions on two consecutive days; 1 mo later they were restudied after 5 days of low Na intake (UNa V 10.5±1.6 meq/24 h). Each dose was infused for 30 min, sequentially. During normal Na intake, [des-Asp]-A II from 2 to 18 pmol/kg per min increased mean blood pressure from 85.2±3 to 95.3±5 mm Hg and plasma aldosterone concentration from 5.2±1.1 to 14.3±1.9 ng/100 ml. During low Na intake, the same dose of [des-Asp]-A II increased mean blood pressure from 83.7±3 to 86.7±3 mm Hg and plasma aldosterone concentration from 34.4±6.0 to 51.0±8.2 ng/100 ml. In contrast, A II from 2 to 6 pmol/kg per min during normal Na intake increased mean blood pressure from 83.3±4 to 102.3±4 mm Hg and plasma aldosterone concentration from 7.0±2.2 to 26.8±2.0 ng/100 ml; during low Na intake, A II increased mean blood pressure from 83.0±3 to 96.0±4 mm Hg and plasma aldosterone concentration from 42.0±9.7 to 102.2±15.4 ng/100 ml. A II and [des-Asp]-A II were equally effective in suppressing renin release. Plasma cortisol and Na and K concentration did not change.

The effects of two doses (2 and 6 pmol/kg per min) of each peptide on blood pressure and aldosterone production were evaluated. During normal Na intake, [des-Asp]-A II had 11-36% of the pressor activity and 15-30% of the steroidogenic activity of A II. Na deprivation attenuated the pressor response and sensitized the adrenal cortex to both peptides, but the increase in steroidogenesis was greater with [des-Asp]-A II than with A II. The dose-response curves for [des-Asp]-A II with respect to blood pressure and aldosterone production were not parallel, and although no maximum was established for A II, [des-Asp]-A II was less efficacious.

In summary, (a) [des-Asp]-A II has biologic activity in man, (b) [des-Asp]-A II is less efficacious than A II in stimulating aldosterone production, (c) Na deprivation sensitizes the adrenal cortex more markedly to [des-Asp]-A II than A II, and (d) dose-response curves for the two peptides differ, suggesting the possibility that they act at different receptor sites in vascular smooth muscle and the adrenal cortex.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 20
page 20
icon of scanned page 21
page 21
icon of scanned page 22
page 22
icon of scanned page 23
page 23
icon of scanned page 24
page 24
icon of scanned page 25
page 25
icon of scanned page 26
page 26
icon of scanned page 27
page 27
icon of scanned page 28
page 28
icon of scanned page 29
page 29
icon of scanned page 30
page 30
icon of scanned page 31
page 31
Version history
  • Version 1 (January 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts