Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Pathogenesis of Mucosal Injury in the Blind Loop Syndrome: BRUSH BORDER ENZYME ACTIVITY AND GLYCOPROTEIN DEGRADATION
Anita Jonas, … , Peter R. Flanagan, Gordon G. Forstner
Anita Jonas, … , Peter R. Flanagan, Gordon G. Forstner
Published December 1, 1977
Citation Information: J Clin Invest. 1977;60(6):1321-1330. https://doi.org/10.1172/JCI108891.
View: Text | PDF

Pathogenesis of Mucosal Injury in the Blind Loop Syndrome: BRUSH BORDER ENZYME ACTIVITY AND GLYCOPROTEIN DEGRADATION

  • Text
  • PDF
Abstract

The effect of intestinal bacterial over-growth on brush border hydrolases and brush border glycoproteins was studied in nonoperated control rats, control rats with surgically introduced jejunal self-emptying blind loops, and rats with surgically introduced jejunal self-filling blind loops. Data were analyzed from blind loop segments, segments above and below the blind loops, and three corresponding segments in the nonoperated controls. Rats with self-filling blind loops had significantly greater fat excretion than controls and exhibited significantly lower conjugated:free bile salt ratios in all three segments. Maltase, sucrase, and lactase activities were significantly reduced in homogenates and isolated brush borders from the self-filling blind loop, but alkaline phosphatase was not affected. The relative degradation rate of homogenate and brush border glycoproteins was assessed by a double-isotope technique involving the injection of d-[6-3H]glucosamine 3 h and d-[U-14C]glucosamine 19 h before sacrifice, and recorded as a 3H:14C ratio. The relative degradation rate in both homogenate and brush border fractions was significantly greater in most segments from rats with self-filling blind loops. In the upper and blind loop segments from rats with self-filling blind loops, the 3H:14C ratios were higher in the brush border membrane than in the corresponding homogenates, indicating that the increased rates of degradation primarily involve membrane glycoproteins. Incorporation of d-[6-3H]glucosamine by brush border glycoproteins was not reduced in rats with self-filling blind loops, suggesting that glycoprotein synthesis was not affected. Polyacrylamide gel electrophoresis of brush border glycoproteins from the contaminated segments indicated that the large molecular weight glycoproteins, which include many of the surface hydrolases, were degraded most rapidly. Brush border maltase, isolated by immunoprecipitation, had 3H:14C ratios characteristic of the most rapidly degraded glycoproteins. The results indicate that bacteria enhance the destruction of intestinal surface glycoproteins including disaccharidases. Since alkaline phosphatase, a glycoprotein, is not affected, the destruction is selective and presumably involves only the most exposed membrane components.

Authors

Anita Jonas, Peter R. Flanagan, Gordon G. Forstner

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts