Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Treatment of insulin resistance with peroxisome proliferator–activated receptor γ agonists
Jerrold M. Olefsky
Jerrold M. Olefsky
Published August 15, 2000
Citation Information: J Clin Invest. 2000;106(4):467-472. https://doi.org/10.1172/JCI10843.
View: Text | PDF
Perspective

Treatment of insulin resistance with peroxisome proliferator–activated receptor γ agonists

  • Text
  • PDF
Abstract

Authors

Jerrold M. Olefsky

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Schematic diagram of the mechanisms of PPARγ action. In the unliganded s...
Schematic diagram of the mechanisms of PPARγ action. In the unliganded state (top), the PPARγ receptor exists as a heterodimer with the RXR nuclear receptor and the heterodimer is located on a PPAR response element (PPRE) of a target gene. The unliganded receptor heterodimer complex is associated with a multicomponent corepressor complex, which physically interacts with the PPARγ receptor through SMRT. The corepressor complex contains histone deacetylase (HDAC) activity, and the deacetylated state of histone inhibits transcription. After PPARγ ligand binding, the corepressor complex is dismissed and a coactivator complex is recruited to the heterodimer PPARγ receptor (bottom). The coactivator complex contains histone acetylase activity, leading to chromatin remodeling, facilitating active transcription. Adapted from Glass and Rosenfeld (29).

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts