Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Treatment of insulin resistance with peroxisome proliferator–activated receptor γ agonists
Jerrold M. Olefsky
Jerrold M. Olefsky
Published August 15, 2000
Citation Information: J Clin Invest. 2000;106(4):467-472. https://doi.org/10.1172/JCI10843.
View: Text | PDF
Perspective

Treatment of insulin resistance with peroxisome proliferator–activated receptor γ agonists

  • Text
  • PDF
Abstract

Authors

Jerrold M. Olefsky

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Schematic diagram of the mechanisms of PPARγ action. In the unliganded s...
Schematic diagram of the mechanisms of PPARγ action. In the unliganded state (top), the PPARγ receptor exists as a heterodimer with the RXR nuclear receptor and the heterodimer is located on a PPAR response element (PPRE) of a target gene. The unliganded receptor heterodimer complex is associated with a multicomponent corepressor complex, which physically interacts with the PPARγ receptor through SMRT. The corepressor complex contains histone deacetylase (HDAC) activity, and the deacetylated state of histone inhibits transcription. After PPARγ ligand binding, the corepressor complex is dismissed and a coactivator complex is recruited to the heterodimer PPARγ receptor (bottom). The coactivator complex contains histone acetylase activity, leading to chromatin remodeling, facilitating active transcription. Adapted from Glass and Rosenfeld (29).
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts