Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Insulin resistance and cardiovascular disease
Henry N. Ginsberg
Henry N. Ginsberg
Published August 15, 2000
Citation Information: J Clin Invest. 2000;106(4):453-458. https://doi.org/10.1172/JCI10762.
View: Text | PDF
Perspective

Insulin resistance and cardiovascular disease

  • Text
  • PDF
Abstract

Authors

Henry N. Ginsberg

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
A simplified model relating insulin resistance to dyslipidemia and cardi...
A simplified model relating insulin resistance to dyslipidemia and cardiovascular disease. Insulin resistance at the adipocyte results in increased release of fatty acids into the circulation. A similar accumulation of fatty acids could arise from defects in fatty acid transporters or intracellular binding proteins. Increased FFA flux to the liver stimulates the assembly and secretion of VLDL resulting in hypertriglyceridemia. In addition, VLDL stimulates the exchange of cholesteryl esters from both HDL and LDL for VLDL TG. ApoA-I can dissociate from TG-enriched HDL. This free apoA-I is cleared rapidly from plasma, in part by excretion through the kidney, thus reducing the availability of HDL for reverse cholesterol transport. TG-enriched LDL can undergo lipolysis and become smaller and more dense. Low levels of HDL and the presence of small dense LDL are each independent risk factors for cardiovascular disease. IR, insulin resistance; CE, cholesteryl ester; SD, small dense.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts