Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI107131

The Role of Iron in the Pathogenesis of Porphyria Cutanea Tarda: AN IN VITRO MODEL

J. P. Kushner, G. R. Lee, and S. Nacht

Departments of Internal Medicine of The Veterans Administration Hospital, and the University of Utah College of Medicine, Salt Lake City, Utah 84112

Find articles by Kushner, J. in: JCI | PubMed | Google Scholar

Departments of Internal Medicine of The Veterans Administration Hospital, and the University of Utah College of Medicine, Salt Lake City, Utah 84112

Find articles by Lee, G. in: JCI | PubMed | Google Scholar

Departments of Internal Medicine of The Veterans Administration Hospital, and the University of Utah College of Medicine, Salt Lake City, Utah 84112

Find articles by Nacht, S. in: JCI | PubMed | Google Scholar

Published December 1, 1972 - More info

Published in Volume 51, Issue 12 on December 1, 1972
J Clin Invest. 1972;51(12):3044–3051. https://doi.org/10.1172/JCI107131.
© 1972 The American Society for Clinical Investigation
Published December 1, 1972 - Version history
View PDF
Abstract

Porphyria cutanea tarda (PCT) is characterized biochemically by excessive hepatic synthesis and urinary excretion of uroporphyrin I. Clinical evidence has implicated iron in the pathogenesis of PCT. The synthesis of the normally occurring isomer of uroporphyrin, namely uroporphyrin III, from porphobilinogen (PBG) requires two enzymes; uroporphyrinogen I synthetase and uroporphyrinogen III cosynthetase (COSYN). In the absence of COSYN only uroporphyrinogen I is formed.

These experiments were designed to study the effect of iron on porphyrin biosynthesis in porcine and human crude liver extracts and to measure COSYN activity in the presence of iron.

Mitochondria-free crude liver extracts were prepared in 0.25 m sucrose at pH 7.4 by centrifugation at 37,000 g. Preparations were incubated with either 0.2 mm amino-levulinic acid (ALA) or 0.1 mm PBG. The addition of ferrous ion (either from ferritin iron [4 μg/ml] and cysteine [6.7 mm] or ferrous ammonium sulfate [0.3 mm Fe] and cysteine) significantly increased the rate of uroporphyrin synthesis from either ALA or PBG. The predominant porphyrin synthesized in the presence of ferrous ion was uroporphyrin I whereas coproporphyrin III predominated in its absence. Orthophenanthroline blocked these effects of ferrous ion.

To investigate the effect of ferrous ion on COSYN, crude liver extracts were incubated with ferrous ammonium sulfate (0.3 mm Fe) and cysteine (6.7 mm) and the COSYN activity of the incubates was assayed directly. In both porcine and human extracts ferrous ion caused marked inhibition of COSYN activity. Orthophenanthroline blocked the inhibitory effect.

Inactivation of COSYN by heating resulted in marked enhancement of porphyrin synthesis from PBG. The sole product was uroporphyrin I.

Thus, inactivation of COSYN results in accelerated synthesis of uroporphyrin I. This effect of ferrous ion provides a possible biochemical explanation for the excess production and excretion of uroporphyrin I in patients with PCT and the reversal of this defect by phlebotomy.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 3044
page 3044
icon of scanned page 3045
page 3045
icon of scanned page 3046
page 3046
icon of scanned page 3047
page 3047
icon of scanned page 3048
page 3048
icon of scanned page 3049
page 3049
icon of scanned page 3050
page 3050
icon of scanned page 3051
page 3051
Version history
  • Version 1 (December 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts