Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI107048

Effects of intrabrachial arterial infusion of pyruvate on forearm tissue metabolism: Interrelationships between pyruvate, lactate, and alanine

Thomas Pozefsky and Robert G. Tancredi

1Clayton Laboratories for Study of Control of Cell Function in Health and Disease, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

Find articles by Pozefsky, T. in: PubMed | Google Scholar

1Clayton Laboratories for Study of Control of Cell Function in Health and Disease, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

Find articles by Tancredi, R. in: PubMed | Google Scholar

Published September 1, 1972 - More info

Published in Volume 51, Issue 9 on September 1, 1972
J Clin Invest. 1972;51(9):2359–2369. https://doi.org/10.1172/JCI107048.
© 1972 The American Society for Clinical Investigation
Published September 1, 1972 - Version history
View PDF
Abstract

Postabsorptive release of alanine from forearm skeletal muscle is large relative to other amino acids, suggesting new synthesis by transamination of pyruvate. This hypothesis was tested and the pathway quantified in six subjects, each given two 30 min intrabrachial arterial pyruvate infusions. The first (12 μmoles/min) supplied approximately that amount of pyruvate produced endogenously by glycolysis in resting muscle. The second (36 μmoles/min) approximated endogenous pyruvate production by glycolysis during moderate exercise. Changes in balance across forearm tissues of pyruvate, glucose, lactate, and amino acids were measured. The time-course of pyruvate equilibration across fore-arm muscles was detailed in three additional subjects.

The two infusions increased arterial pyruvate from 64 to 674 and 1776 μmoles/liter respectively. Muscle consumed 72% of the exogenous pyruvate during both infusions. Outputs of lactate and alanine increased, accounting respectively for 30.3 and 6.7% of the pyruvate at the low infusion rate, and 17.1 and 3.8% at the high rate. The remaining pyruvate probably was oxidized. Muscle release of valine, isoleucine, and leucine decreased during the high dose infusion. Additionally, adipose tissue plus skin released more alanine and lactate during the high dose infusion. Other metabolies were unchanged.

Thus, both muscle and adipose tissue plus skin synthesize alanine from pyruvate. Lactate production considerably exceeds that of alanine. In muscle, increased availability of intracellular pyruvate serving as a nitrogen acceptor may facilitate branched chain amino acid oxidation. Muscle consumption of infused pyruvate is rapid, and detailed studies of its equilibration suggest that passage across the muscle cell membrane is rate limiting.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2359
page 2359
icon of scanned page 2360
page 2360
icon of scanned page 2361
page 2361
icon of scanned page 2362
page 2362
icon of scanned page 2363
page 2363
icon of scanned page 2364
page 2364
icon of scanned page 2365
page 2365
icon of scanned page 2366
page 2366
icon of scanned page 2367
page 2367
icon of scanned page 2368
page 2368
icon of scanned page 2369
page 2369
Version history
  • Version 1 (September 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts