Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Glycosyltransferases in human blood: II. Study of serum galactosyltransferase and N-acetylgalactosaminyltransferase in patients with liver diseases
Y. S. Kim, … , J. S. Whitehead, K. J. Curtis
Y. S. Kim, … , J. S. Whitehead, K. J. Curtis
Published August 1, 1972
Citation Information: J Clin Invest. 1972;51(8):2033-2039. https://doi.org/10.1172/JCI107009.
View: Text | PDF

Glycosyltransferases in human blood: II. Study of serum galactosyltransferase and N-acetylgalactosaminyltransferase in patients with liver diseases

  • Text
  • PDF
Abstract

Serum galactosyltransferase activity was found to be elevated in patients with alcoholic and other liver disorders but remained at a normal level in patients with a variety of nonhepatic diseases. The properties of the galactosyltransferase in patients with liver disease were compared with those of the enzyme in the serum of normal subjects. The possible presence of inhibitors or activators in the serum was examined. Results indicated that in patients with liver disease, the rise in the serum galactosyltransferase was due to an increase in the level of the enzyme present in normal serum and not due to the appearance of a new enzyme. In the cases examined, the level of the enzyme increased with the deterioration of liver function and declined in a patient recovering from acute alcoholic hepatitis. Another glycosyltransferase, an N-acetylgalactosaminyltransferase, was not elevated in the serum of liver disease patients and, unlike the galactosyltransferase, was not detected in normal liver. The results suggest that the serum galactosyltransferase originates from the liver and that an abnormal rise in the level of this enzyme in serum is due to hepatocellular damage.

Authors

Y. S. Kim, J. Perdomo, J. S. Whitehead, K. J. Curtis

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 133 8
PDF 58 12
Scanned page 242 6
Citation downloads 72 0
Totals 505 26
Total Views 531
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts