Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI106929

Glucose-induced alkalosis in fasting subjects: Relationship to renal bicarbonate reabsorption during fasting and refeeding

Bobby J. Stinebaugh and Francis X. Schloeder

Renal Section, Department of Internal Medicine, Gorgas Hospital, Ancon, Canal Zone

Find articles by Stinebaugh, B. in: PubMed | Google Scholar

Renal Section, Department of Internal Medicine, Gorgas Hospital, Ancon, Canal Zone

Find articles by Schloeder, F. in: PubMed | Google Scholar

Published June 1, 1972 - More info

Published in Volume 51, Issue 6 on June 1, 1972
J Clin Invest. 1972;51(6):1326–1336. https://doi.org/10.1172/JCI106929.
© 1972 The American Society for Clinical Investigation
Published June 1, 1972 - Version history
View PDF
Abstract

This study documents the development of alkalosis in patients returning to caloric intake after a period of starvation and investigates the mechanisms responsible for this metabolic alteration. We studied the acid-base status, bicarbonate reabsorption, acid excretion, and sodium metabolism during fasting and glucose refeeding in 19 patients receiving sodium supplements.

Metabolic alkalosis developed promptly in all of the subjects who terminated an 18 day fast with 300 g of glucose daily for 4 days. Tubular maximum reabsorptive capacity for bicarbonate and renal bicarbonate threshold determinations were performed at varying intervals in six and seven subjects, respectively, who had fasted for 3-18 days. The results demonstrated that bicarbonate reabsorptive capacity was normal or low during early fasting, markedly elevated during the 2nd wk; and moderately elevated during the 3rd wk of fasting. Glucose administration at all stages of fasting caused a further increase in bicarbonate threshold.

Sodium balance during fasting with sodium supplements was found to follow a triphasic pattern, with the occurrence of a natriuresis during the 1st wk followed by a period of sodium retention after which neutral daily sodium balance was reestablished. Correlation of bicarbonate reabsorption with sodium homeostasis indicated a slight decrease in renal bicarbonate threshold during the natriuretic phase, a marked increase in bicarbonate reabsorption during the period of sodium retention, and a continued moderate elevation of threshold after sodium balance was reestablished. This relationship was interpreted to indicate that changes in bicarbonate reabsorption during fasting and refeeding may be secondary to alterations in the renal reabsorption of sodium.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1326
page 1326
icon of scanned page 1327
page 1327
icon of scanned page 1328
page 1328
icon of scanned page 1329
page 1329
icon of scanned page 1330
page 1330
icon of scanned page 1331
page 1331
icon of scanned page 1332
page 1332
icon of scanned page 1333
page 1333
icon of scanned page 1334
page 1334
icon of scanned page 1335
page 1335
icon of scanned page 1336
page 1336
Version history
  • Version 1 (June 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts