Previous studies of digitalis glycoside metabolism and excretion have indicated that these compounds undergo a significant enterohepatic cycle in some species. It has been suggested that the existence of such a cycle in man contributes to the prolonged action of certain cardiac glycosides. Previous studies have demonstrated that cholestyramine binds digitoxin and digoxin in vitro and accelerates the metabolic disposition of digitoxin in rats and guinea pigs, presumably by interrupting the enterohepatic circulation.
James H. Caldwell, Charles A. Bush, Norton J. Greenberger
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 146 | 7 |
46 | 14 | |
Scanned page | 235 | 5 |
Citation downloads | 49 | 0 |
Totals | 476 | 26 |
Total Views | 502 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.