Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI106675

The significance of erythrocyte antigen site density: II. Hemolysis

Leon W. Hoyer and Norma C. Trabold

Department of Medical and Pediatric Specialties, University of Connecticut School of Medicine, Hartford, Connecticut 06105

Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14620

Find articles by Hoyer, L. in: PubMed | Google Scholar

Department of Medical and Pediatric Specialties, University of Connecticut School of Medicine, Hartford, Connecticut 06105

Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14620

Find articles by Trabold, N. in: PubMed | Google Scholar

Published September 1, 1971 - More info

Published in Volume 50, Issue 9 on September 1, 1971
J Clin Invest. 1971;50(9):1840–1846. https://doi.org/10.1172/JCI106675.
© 1971 The American Society for Clinical Investigation
Published September 1, 1971 - Version history
View PDF
Abstract

The importance of antigen site density has been studied by means of a model passive hemolysis system using red cells coupled with sulfanilic acid groups. Relative site numbers were estimated from the covalent linkage of sulfanilic acid-35S to red cell membrane protein, and the effective antigen site number was determined with 125I-labeled rabbit IgG anti-sulfanilic acid (anti-S).

Immune hemolysis was demonstrated for red cells which had greater than a threshold number of antigen sites, the value of which was different for normal human cells (80,000 sites/cell), cells from a patient with paroxysmal nocturnal hemoglobinuria (PNH) (40,000 sites/cell), and sheep red blood cells (RBC) (15,000 sites/cell). Cells with antigen site densities below these values did not hemolyze when tested with 1 mg/ml purified rabbit IgM anti-S. 2-8 times greater antigen site densities were required to obtain hemolysis with IgG anti-S. Above the threshold value, hemolysis titers were proportional to the antigen site number until maximal values were obtained. The greater hemolytic efficiency of IgM antibody was demonstrated in this system, and it was established that the magnitude of the difference was related to the test cell antigen site density.

These data, taken with previously reported hemagglutination studies, have been used to develop a general classification of immune hemolysis and hemagglutination based on antigen site density and antibody class. It is suggested that the heterogeneity of blood group systems is caused by differences in the site separation of erythrocyte membrane antigens.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1840
page 1840
icon of scanned page 1841
page 1841
icon of scanned page 1842
page 1842
icon of scanned page 1843
page 1843
icon of scanned page 1844
page 1844
icon of scanned page 1845
page 1845
icon of scanned page 1846
page 1846
Version history
  • Version 1 (September 1, 1971): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts