Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI106293

Hemodynamic effects of pneumonia: II. Expansion of plasma volume

Raj Kumar, Wayne A. Wallace, Alberto Ramirez, Herbert Benson, and Walter H. Abelmann

Thorndike Memorial Laboratory, Harvard Medical Unit, Boston City Hospital, Boston, Massachusetts 02118

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Kumar, R. in: JCI | PubMed | Google Scholar

Thorndike Memorial Laboratory, Harvard Medical Unit, Boston City Hospital, Boston, Massachusetts 02118

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Wallace, W. in: JCI | PubMed | Google Scholar

Thorndike Memorial Laboratory, Harvard Medical Unit, Boston City Hospital, Boston, Massachusetts 02118

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Ramirez, A. in: JCI | PubMed | Google Scholar

Thorndike Memorial Laboratory, Harvard Medical Unit, Boston City Hospital, Boston, Massachusetts 02118

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Benson, H. in: JCI | PubMed | Google Scholar

Thorndike Memorial Laboratory, Harvard Medical Unit, Boston City Hospital, Boston, Massachusetts 02118

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Abelmann, W. in: JCI | PubMed | Google Scholar

Published April 1, 1970 - More info

Published in Volume 49, Issue 4 on April 1, 1970
J Clin Invest. 1970;49(4):799–805. https://doi.org/10.1172/JCI106293.
© 1970 The American Society for Clinical Investigation
Published April 1, 1970 - Version history
View PDF
Abstract

Previous work has demonstrated that approximately one-third of patients with pneumonia have a hypodynamic circulatory response. This response is characterized by an abnormally wide arteriovenous oxygen difference, a low cardiac output, increased peripheral resistance, and an increased hematocrit. This state was found to abate in convalescence. In an attempt to elucidate the pathogenesis of this hypodynamic state, nine additional patients were studied hemodynamically during the acute phase of pneumonia before and during acute expansion of blood volume by low molecular weight dextran (seven patients) or normal saline (two patients). Five patients were restudied before and during acute blood volume expansion in convalescence.

Three patients with pneumonia had a normal arteriovenous oxygen difference (< 5.5 vol%), and six patients were hypodynamic in that their arteriovenous oxygen differences were greater than 5.5 vol%. With expansion of blood volume in the acute phase of pneumonia, all patients showed an increase in cardiac output, a decrease in arteriovenous oxygen difference, and a decrease in peripheral vascular resistance; however, the percentage change in the hypodynamic patients was not as great as occurred in the patients with normal hemodynamics nor as great as occurred when restudied in convalescence. Likewise, all patients had a normal or near normal hemodynamic profile in convalescence. In addition, ventricular function in the acute phase of pneumonia was depressed. The findings suggest that the hypodynamic state associated with acute pneumonia is due to depressed myocardial contractility to which relative hypovolemia may contribute.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 799
page 799
icon of scanned page 800
page 800
icon of scanned page 801
page 801
icon of scanned page 802
page 802
icon of scanned page 803
page 803
icon of scanned page 804
page 804
icon of scanned page 805
page 805
Version history
  • Version 1 (April 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts