Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Glycogenesis and glyconeogenesis in human platelets: Incorporation of glucose, pyruvate, and citrate into platelet glycogen; glycogen synthetase and fructose-1,6-diphosphatase activity
Simon Karpatkin, … , Arthur Charmatz, Richard M. Langer
Simon Karpatkin, … , Arthur Charmatz, Richard M. Langer
Published January 1, 1970
Citation Information: J Clin Invest. 1970;49(1):140-149. https://doi.org/10.1172/JCI106212.
View: Text | PDF

Glycogenesis and glyconeogenesis in human platelets: Incorporation of glucose, pyruvate, and citrate into platelet glycogen; glycogen synthetase and fructose-1,6-diphosphatase activity

  • Text
  • PDF
Abstract

Washed human platelets are capable of depositing 1-4 as well as probable 1-6 glucosyl linkages onto preexistent glycogen primer. They are also capable of degrading (glycogenolysis) newly synthesized 1-4 as well as probable 1-6 glucosyl linkages. A higher rate of glycogen synthesis was found in platelet suspensions containing lower concentrations of platelets. This was shown to result from decreased glycogen degradation and consequent increased residual glycogen primer in low platelet suspensions. The increased glycogen content of low platelet suspensions was not a result of platelet washing, removal of platelets from plasma, or release of platelet metabolites into the media. The enzyme glycogen synthetase was found to be present at a rate of 5.2 μmoles of uridine diphosphate (UDP) glucose incorporated into glycogen per gram platelets per hour at 37°C. The Km for UDP glucose was 6.6 mmoles/liter. At optimum concentration of glucose 6-phosphate, the Km was reduced 4.6 fold and Vmax was increased 4.3-fold.

Authors

Simon Karpatkin, Arthur Charmatz, Richard M. Langer

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 196 25
PDF 58 11
Scanned page 337 24
Citation downloads 46 0
Totals 637 60
Total Views 697
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts