Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI106178

Lipid metabolism in human platelets: II. De novo phospholipid synthesis and the effect of thrombin on the pattern of synthesis

Nancy Lewis and Philip W. Majerus

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Lewis, N. in: PubMed | Google Scholar

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Majerus, P. in: PubMed | Google Scholar

Published November 1, 1969 - More info

Published in Volume 48, Issue 11 on November 1, 1969
J Clin Invest. 1969;48(11):2114–2123. https://doi.org/10.1172/JCI106178.
© 1969 The American Society for Clinical Investigation
Published November 1, 1969 - Version history
View PDF
Abstract

Washed human platelets were incubated with radioactive glycerol; the platelets were able to synthesize de novo the major phosphoglycerides including phosphatidic acid, phosphatidylinositol, phosphatidyl choline, phosphatidyl ethanolamine, and phosphatidyl serine. The specific activities of the phosphoglycerides obtained after glycerol incorporation indicate that phosphatidic acid, phosphatidylinositol, and phosphatidyl choline are metabolically active relative to phosphatidyl ethanolamine and that formation of phosphatidyl serine occurs to a much more limited extent. When platelets were incubated with bovine thrombin, 1 U/ml, the pattern of glycerol incorporation into phospholipid was changed. There was a 3-fold decrease in the total incorporation into lipid in 30 min with a relative 5-fold decreased incorporation into phosphatidyl choline and phosphatidyl ethanolamine and a 5-fold increased incorporation into phosphatidyl serine. The increased incorporation into phosphatidyl serine. The increased incorporation into phosphatidyl serine was maximal within the first 2 min but was transient, since within 20 minutes, the rate returned to that seen in platelets incubated with glycerol alone. Purified human thrombin also produced this same effect on phospholipid synthesis in platelets. Trypsin produced effects on phosphoglyceride formation similar to those seen with thrombin, and the trypsin-induced effect was inhibited by prior incubation of trypsin with soybean trypsin inhibitor, suggesting that proteolysis may be required for the observed effects on phospholipid synthesis.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2114
page 2114
icon of scanned page 2115
page 2115
icon of scanned page 2116
page 2116
icon of scanned page 2117
page 2117
icon of scanned page 2118
page 2118
icon of scanned page 2119
page 2119
icon of scanned page 2120
page 2120
icon of scanned page 2121
page 2121
icon of scanned page 2122
page 2122
icon of scanned page 2123
page 2123
Version history
  • Version 1 (November 1, 1969): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts