Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI105993

Renal metabolic response to acid base changes: I. Enzymatic control of ammoniagenesis in the rat

George A. O. Alleyne and George H. Scullard

Medical Research Council, Tropical Metabolism Research Unit, University of the West Indies, Kingston 7, Jamaica

Find articles by Alleyne, G. in: PubMed | Google Scholar

Medical Research Council, Tropical Metabolism Research Unit, University of the West Indies, Kingston 7, Jamaica

Find articles by Scullard, G. in: PubMed | Google Scholar

Published February 1, 1969 - More info

Published in Volume 48, Issue 2 on February 1, 1969
J Clin Invest. 1969;48(2):364–370. https://doi.org/10.1172/JCI105993.
© 1969 The American Society for Clinical Investigation
Published February 1, 1969 - Version history
View PDF
Abstract

Experiments were done on rats to investigate the nature of the renal response to metabolic acidosis and the changes in enzyme activity associated with increased ammoniagenesis.

When metabolic acidosis was induced with oral feeding of ammonium chloride for 48 hr, there was an increase of activity of the enzyme phosphoenolpyruvate carboxykinase (PEPCK) in whole kidneys as well as in the kidney cortex. There was no change in PEPCK in liver, and glucose-6-phosphatase showed no change in kidney or liver in response to metabolic acidosis.

The increase in PEPCK activity in kidney cortex varied with the degree of acidosis and there was a close correlation between cortical PEPCK activity and urinary ammonia. Kidney cortex mitochondrial PEPCK did not change in response to metabolic acidosis. An increase in PEPCK occurred as early as 6 hr after NH4Cl feeding, before there was any increase in kidney glutaminase I activity.

Rats fed sodium phosphate, or given triamcinolone intramuscularly, developed a metabolic alkalosis, but there was increased urinary ammonia and an increase in activity of renal cortical PEPCK. Triamcinolone plus ammonium chloride induced a greater increase of PEPCK activity than triamcinolone by itself; on the contrary, the rise of glucose-6-phosphatase induced by triamcinolone was not enhanced by acidosis. Glucose-6-phosphatase from control and acidotic rats had identical kinetic characteristics.

The results indicate that increased PEPCK activity is constantly related to increases of urinary ammonia. It is proposed that the increase of PEPCK activity is the key event in the ammoniagenesis and gluconeogenesis which follow on metabolic acidosis.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 364
page 364
icon of scanned page 365
page 365
icon of scanned page 366
page 366
icon of scanned page 367
page 367
icon of scanned page 368
page 368
icon of scanned page 369
page 369
icon of scanned page 370
page 370
Version history
  • Version 1 (February 1, 1969): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts