Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI105964

Lipid metabolism in human platelets: I. Evidence for a complete fatty acid synthesizing system

Philip W. Majerus, M. B. Smith, and G. H. Clamon

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Majerus, P. in: PubMed | Google Scholar

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Smith, M. in: PubMed | Google Scholar

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Clamon, G. in: PubMed | Google Scholar

Published January 1, 1969 - More info

Published in Volume 48, Issue 1 on January 1, 1969
J Clin Invest. 1969;48(1):156–164. https://doi.org/10.1172/JCI105964.
© 1969 The American Society for Clinical Investigation
Published January 1, 1969 - Version history
View PDF
Abstract

Extracts from human platelets contain the enzymes of de novo fatty acid biosynthesis. The pattern of incorporation of acetate-1-14C into fatty acids by intact platelets indicates that these enzymes function in platelets. The level of acetyl-coenzyme A (CoA) carboxylase activity in extracts of platelets from normal subjects is 0.036 ±0.01 mμmole of malonyl-CoA formed per min per mg of protein and that of fatty acid synthetase is 0.075 ±0.016 mμmole of malonyl-CoA utilized per min per mg of protein. Thus, platelets are the only formed elements of the blood capable of de novo fatty acid synthesis. The capacity of platelets to synthesize fatty acids is similar to human liver based on enzyme activity per milligram of soluble protein.

Acetyl-CoA carboxylase was purified 16-fold from platelet extracts, and this partially purified enzyme was compared to enzyme from rat liver. The two enzymes were similar with respect to requirements, substrate affinities, pH profile of activity, inhibition by malonyl-CoA, and aggregation in the presence of citrate. Thus, while fatty acid synthesis may serve a different function in platelets than in liver, the properties of acetyl-CoA carboxylase from these tissues are alike.

The levels of the enzymes of fatty acid synthesis were significantly higher in platelets from splenectomized subjects than in controls. Acetyl-CoA carboxylase levels were 0.086 ±0.027 mμmole of malonyl-CoA formed per min per mg of protein, and fatty acid synthetase levels were 0.151 ±0.039 mμmole of malonyl-CoA utilized per min per mg of protein. These changes in the enzymes of fatty acid synthesis occurred promptly after splenectomy with peak values being reached within 7-10 days.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 156
page 156
icon of scanned page 157
page 157
icon of scanned page 158
page 158
icon of scanned page 159
page 159
icon of scanned page 160
page 160
icon of scanned page 161
page 161
icon of scanned page 162
page 162
icon of scanned page 163
page 163
icon of scanned page 164
page 164
Version history
  • Version 1 (January 1, 1969): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts