Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Renal tubular transport of proline, hydroxyproline, and glycine: III. Genetic basis for more than one mode of transport in human kidney
Charles R. Scriver
Charles R. Scriver
Published April 1, 1968
Citation Information: J Clin Invest. 1968;47(4):823-835. https://doi.org/10.1172/JCI105776.
View: Text | PDF | Errata

Renal tubular transport of proline, hydroxyproline, and glycine: III. Genetic basis for more than one mode of transport in human kidney

  • Text
  • PDF
Abstract

Impaired renal tubular transport of proline, hydroxyproline, and glycine was inherited as an autosomal recessive trait in two Ashkenazi-Jewish pedigrees and one French-Canadian family; the heterozygotes for the trait exhibited hyperglycinuria only. Intestinal transport of imino acids and glycine was not impaired in homozygotes. It is possible that more than one mutant allele may occur at a locus controlling tubular transport of the imino acids and glycine, since one subject with the imino-glycinuric phenotype had one parent who was not hyperglycinuric.

Authors

Charles R. Scriver

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 218 10
PDF 96 12
Scanned page 603 1
Citation downloads 71 0
Totals 988 23
Total Views 1,011
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts