Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Evidence for angiotensin II type 2 receptor–mediated cardiac myocyte enlargement during in vivo pressure overload
Takaaki Senbonmatsu, … , F. Andrew Gaffney, Tadashi Inagami
Takaaki Senbonmatsu, … , F. Andrew Gaffney, Tadashi Inagami
Published August 1, 2000
Citation Information: J Clin Invest. 2000;106(3):R25-R29. https://doi.org/10.1172/JCI10037.
View: Text | PDF
Rapid Publication

Evidence for angiotensin II type 2 receptor–mediated cardiac myocyte enlargement during in vivo pressure overload

  • Text
  • PDF
Abstract

The pathophysiological roles of the angiotensin II type 2 receptor (AT2) in cardiac hypertrophy remain unclear. By the targeted deletion of mouse AT2 we were able to prevent the left ventricular hypertrophy resulting from pressure overload, while cardiac contractile functions remained normal. This implies that AT2 is a mediator of cardiac hypertrophy in response to increased blood pressure. The effects of AT2 deletion were independent of activation of embryonic genes for cardiac hypertrophy. However, p70S6k, one of the key factors in cardiac hypertrophy, was markedly and specifically reduced in the ventricles of Agtr2–/Y mice. We propose that p70S6k plays a major role in AT2-mediated ventricular hypertrophy.

Authors

Takaaki Senbonmatsu, Sahoko Ichihara, Edward Price Jr., F. Andrew Gaffney, Tadashi Inagami

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 327 20
PDF 47 17
Figure 156 3
Citation downloads 51 0
Totals 581 40
Total Views 621
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts