Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published March 1, 2016 Previous issue | Next issue

  • Volume 126, Issue 3
Go to section:
  • Conversations with Giants in Medicine
  • Reviews
  • Commentaries
  • Research Articles

On the cover: A niche for M. tuberculosis

The cover image shows human primary lymphatic endothelial cells (actin, red; nuclei, blue) infected with mycobacteria expressing EGFP (green). On page 1093, Lerner et al. report that lymphatic endothelial cells harbor M. tuberculosis and serve as a site for bacterial replication.

Conversations with Giants in Medicine
A conversation with Huda Zoghbi
Ushma S. Neill
Ushma S. Neill
Published March 1, 2016
Citation Information: J Clin Invest. 2016;126(3):797-798. https://doi.org/10.1172/JCI86445.
View: Text | PDF

A conversation with Huda Zoghbi

  • Text
  • PDF
Abstract

Authors

Ushma S. Neill

×
Reviews
Beyond antigens and adjuvants: formulating future vaccines
Tyson J. Moyer, … , Andrew C. Zmolek, Darrell J. Irvine
Tyson J. Moyer, … , Andrew C. Zmolek, Darrell J. Irvine
Published March 1, 2016
Citation Information: J Clin Invest. 2016;126(3):799-808. https://doi.org/10.1172/JCI81083.
View: Text | PDF

Beyond antigens and adjuvants: formulating future vaccines

  • Text
  • PDF
Abstract

The need to optimize vaccine potency while minimizing toxicity in healthy recipients has motivated studies of the formulation of vaccines to control how, when, and where antigens and adjuvants encounter immune cells and other cells/tissues following administration. An effective subunit vaccine must traffic to lymph nodes (LNs), activate both the innate and adaptive arms of the immune system, and persist for a sufficient time to promote a mature immune response. Here, we review approaches to tailor these three aspects of vaccine function through optimized formulations. Traditional vaccine adjuvants activate innate immune cells, promote cell-mediated transport of antigen to lymphoid tissues, and promote antigen retention in LNs. Recent studies using nanoparticles and other lymphatic-targeting strategies suggest that direct targeting of antigens and adjuvant compounds to LNs can also enhance vaccine potency without sacrificing safety. The use of formulations to regulate biodistribution and promote antigen and inflammatory cue co-uptake in immune cells may be important for next-generation molecular adjuvants. Finally, strategies to program vaccine kinetics through novel formulation and delivery strategies provide another means to enhance immune responses independent of the choice of adjuvant. These technologies offer the prospect of enhanced efficacy while maintaining high safety profiles necessary for successful vaccines.

Authors

Tyson J. Moyer, Andrew C. Zmolek, Darrell J. Irvine

×

Mitochondria in lung disease
Suzanne M. Cloonan, Augustine M.K. Choi
Suzanne M. Cloonan, Augustine M.K. Choi
Published March 1, 2016
Citation Information: J Clin Invest. 2016;126(3):809-820. https://doi.org/10.1172/JCI81113.
View: Text | PDF

Mitochondria in lung disease

  • Text
  • PDF
Abstract

Mitochondria are a distinguishing feature of eukaryotic cells. Best known for their critical function in energy production via oxidative phosphorylation (OXPHOS), mitochondria are essential for nutrient and oxygen sensing and for the regulation of critical cellular processes, including cell death and inflammation. Such diverse functional roles for organelles that were once thought to be simple may be attributed to their distinct heteroplasmic genome, exclusive maternal lineage of inheritance, and ability to generate signals to communicate with other cellular organelles. Mitochondria are now thought of as one of the cell’s most sophisticated and dynamic responsive sensing systems. Specific signatures of mitochondrial dysfunction that are associated with disease pathogenesis and/or progression are becoming increasingly important. In particular, the centrality of mitochondria in the pathological processes and clinical phenotypes associated with a range of lung diseases is emerging. Understanding the molecular mechanisms regulating the mitochondrial processes of lung cells will help to better define phenotypes and clinical manifestations associated with respiratory disease and to identify potential diagnostic and therapeutic targets.

Authors

Suzanne M. Cloonan, Augustine M.K. Choi

×

Endothelial fluid shear stress sensing in vascular health and disease
Nicolas Baeyens, … , Sanguk Yun, Martin A. Schwartz
Nicolas Baeyens, … , Sanguk Yun, Martin A. Schwartz
Published March 1, 2016
Citation Information: J Clin Invest. 2016;126(3):821-828. https://doi.org/10.1172/JCI83083.
View: Text | PDF

Endothelial fluid shear stress sensing in vascular health and disease

  • Text
  • PDF
Abstract

Endothelial cells transduce the frictional force from blood flow (fluid shear stress) into biochemical signals that regulate gene expression and cell behavior via specialized mechanisms and pathways. These pathways shape the vascular system during development and during postnatal and adult life to optimize flow to tissues. The same pathways also contribute to atherosclerosis and vascular malformations. This Review covers recent advances in basic mechanisms of flow signaling and the involvement of these mechanisms in vascular physiology, remodeling, and these diseases. We propose that flow sensing pathways that govern normal morphogenesis can contribute to disease under pathological conditions or can be altered to induce disease. Viewing atherosclerosis and vascular malformations as instances of pathological morphogenesis provides a unifying perspective that may aid in developing new therapies.

Authors

Nicolas Baeyens, Chirosree Bandyopadhyay, Brian G. Coon, Sanguk Yun, Martin A. Schwartz

×
Commentaries
Battle of the sex steroids in the male skeleton: and the winner is…
Thomas J. Weber
Thomas J. Weber
Published February 22, 2016
Citation Information: J Clin Invest. 2016;126(3):829-832. https://doi.org/10.1172/JCI85006.
View: Text | PDF

Battle of the sex steroids in the male skeleton: and the winner is…

  • Text
  • PDF
Abstract

Male osteoporosis is a multifactorial disease, although it is often in part related to hypogonadism. While testosterone replacement therapy has been shown to improve bone mineral density, studies have also linked bone loss and higher fracture risk in men to low estrogen levels. In this issue of the JCI, Finkelstein and colleagues report the results of a clinical study in a cohort of healthy adult men aimed at further discerning the specific roles of androgen and estrogen deficiency in bone loss. The results of their study support previous findings that estrogen deficiency has a dramatic effect on bone homeostasis in men. Future studies to corroborate and expand on these findings have potential to influence the clinical management of male osteoporosis.

Authors

Thomas J. Weber

×

New perspectives on the hepatitis B virus life cycle in the human liver
Peter A. Revill, Stephen A. Locarnini
Peter A. Revill, Stephen A. Locarnini
Published February 22, 2016
Citation Information: J Clin Invest. 2016;126(3):833-836. https://doi.org/10.1172/JCI86650.
View: Text | PDF

New perspectives on the hepatitis B virus life cycle in the human liver

  • Text
  • PDF
Abstract

The central role of the transcriptional template of the hepatitis B virus (HBV), covalently closed circular DNA (cccDNA), has been difficult to study in patients with chronic hepatitis B (CHB) infection. In this issue of the JCI, Zhang and colleagues reveal a mosaic distribution of viral antigens and nucleic acids and a mismatch between HBV cccDNA, RNA, and expression of the hepatitis B surface antigen (HBsAg). These unusual patterns varied over the natural history of CHB, prompting the authors to propose a new three-stage model of the HBV life cycle at the single-cell level.

Authors

Peter A. Revill, Stephen A. Locarnini

×
Research Articles
PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts
Mogher Khamaisi, … , Amy Wagers, George L. King
Mogher Khamaisi, … , Amy Wagers, George L. King
Published January 25, 2016
Citation Information: J Clin Invest. 2016;126(3):837-853. https://doi.org/10.1172/JCI82788.
View: Text | PDF

PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts

  • Text
  • PDF
Abstract

Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.

Authors

Mogher Khamaisi, Sayaka Katagiri, Hillary Keenan, Kyoungmin Park, Yasutaka Maeda, Qian Li, Weier Qi, Thomas Thomou, Danielle Eschuk, Ana Tellechea, Aris Veves, Chenyu Huang, Dennis Paul Orgill, Amy Wagers, George L. King

×

Targeting human melanoma neoantigens by T cell receptor gene therapy
Matthias Leisegang, … , Wolfgang Uckert, Thomas Blankenstein
Matthias Leisegang, … , Wolfgang Uckert, Thomas Blankenstein
Published January 25, 2016
Citation Information: J Clin Invest. 2016;126(3):854-858. https://doi.org/10.1172/JCI83465.
View: Text | PDF Brief Report

Targeting human melanoma neoantigens by T cell receptor gene therapy

  • Text
  • PDF
Abstract

In successful cancer immunotherapy, T cell responses appear to be directed toward neoantigens created by somatic mutations; however, direct evidence that neoantigen-specific T cells cause regression of established cancer is lacking. Here, we generated T cells expressing a mutation-specific transgenic T cell receptor (TCR) to target different immunogenic mutations in cyclin-dependent kinase 4 (CDK4) that naturally occur in human melanoma. Two mutant CDK4 isoforms (R24C, R24L) similarly stimulated T cell responses in vitro and were analyzed as therapeutic targets for TCR gene therapy. In a syngeneic HLA-A2–transgenic mouse model of large established tumors, we found that both mutations differed dramatically as targets for TCR-modified T cells in vivo. While T cells expanded efficiently and produced IFN-γ in response to R24L, R24C failed to induce an effective antitumor response. Such differences in neoantigen quality might explain why cancer immunotherapy induces tumor regression in some individuals, while others do not respond, despite similar mutational load. We confirmed the validity of the in vivo model by showing that the melan-A–specific (MART-1–specific) TCR DMF5 induces rejection of tumors expressing analog, but not native, MART-1 epitopes. The described model allows identification of those neoantigens in human cancer that serve as suitable T cell targets and may help to predict clinical efficacy.

Authors

Matthias Leisegang, Thomas Kammertoens, Wolfgang Uckert, Thomas Blankenstein

×

Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9
Irma Garcia-Martinez, … , Albert Candia, Wajahat Zafar Mehal
Irma Garcia-Martinez, … , Albert Candia, Wajahat Zafar Mehal
Published January 25, 2016
Citation Information: J Clin Invest. 2016;126(3):859-864. https://doi.org/10.1172/JCI83885.
View: Text | PDF Brief Report

Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9

  • Text
  • PDF
Abstract

Nonalcoholic steatohepatitis (NASH) is the most common liver disease in industrialized countries. NASH is a progressive disease that can lead to cirrhosis, cancer, and death, and there are currently no approved therapies. The development of NASH in animal models requires intact TLR9, but how the TLR9 pathway is activated in NASH is not clear. Our objectives in this study were to identify NASH-associated ligands for TLR9, establish the cellular requirement for TLR9, and evaluate the role of obesity-induced changes in TLR9 pathway activation. We demonstrated that plasma from mice and patients with NASH contains high levels of mitochondrial DNA (mtDNA) and intact mitochondria and has the ability to activate TLR9. Most of the plasma mtDNA was contained in microparticles (MPs) of hepatocyte origin, and removal of these MPs from plasma resulted in a substantial decrease in TLR9 activation capacity. In mice, NASH development in response to a high-fat diet required TLR9 on lysozyme-expressing cells, and a clinically applicable TLR9 antagonist blocked the development of NASH when given prophylactically and therapeutically. These data demonstrate that activation of the TLR9 pathway provides a link between the key metabolic and inflammatory phenotypes in NASH.

Authors

Irma Garcia-Martinez, Nicola Santoro, Yonglin Chen, Rafaz Hoque, Xinshou Ouyang, Sonia Caprio, Mark J. Shlomchik, Robert Lee Coffman, Albert Candia, Wajahat Zafar Mehal

×

Lineage-affiliated transcription factors bind the Gata3 Tce1 enhancer to mediate lineage-specific programs
Sakie Ohmura, … , Satoru Takahashi, James Douglas Engel
Sakie Ohmura, … , Satoru Takahashi, James Douglas Engel
Published January 25, 2016
Citation Information: J Clin Invest. 2016;126(3):865-878. https://doi.org/10.1172/JCI83894.
View: Text | PDF

Lineage-affiliated transcription factors bind the Gata3 Tce1 enhancer to mediate lineage-specific programs

  • Text
  • PDF
Abstract

The transcription factor GATA3 is essential for the genesis and maturation of the T cell lineage, and GATA3 dysregulation has pathological consequences. Previous studies have shown that GATA3 function in T cell development is regulated by multiple signaling pathways and that the Notch nuclear effector, RBP-J, binds specifically to the Gata3 promoter. We previously identified a T cell–specific Gata3 enhancer (Tce1) lying 280 kb downstream from the structural gene and demonstrated in transgenic mice that Tce1 promoted T lymphocyte–specific transcription of reporter genes throughout T cell development; however, it was not clear if Tce1 is required for Gata3 transcription in vivo. Here, we determined that the canonical Gata3 promoter is insufficient for Gata3 transcriptional activation in T cells in vivo, precluding the possibility that promoter binding by a host of previously implicated transcription factors alone is responsible for Gata3 expression in T cells. Instead, we demonstrated that multiple lineage-affiliated transcription factors bind to Tce1 and that this enhancer confers T lymphocyte–specific Gata3 activation in vivo, as targeted deletion of Tce1 in a mouse model abrogated critical functions of this T cell–regulatory element. Together, our data show that Tce1 is both necessary and sufficient for critical aspects of Gata3 T cell–specific transcriptional activity.

Authors

Sakie Ohmura, Seiya Mizuno, Hisashi Oishi, Chia-Jui Ku, Mary Hermann, Tomonori Hosoya, Satoru Takahashi, James Douglas Engel

×

Acidic pH increases airway surface liquid viscosity in cystic fibrosis
Xiao Xiao Tang, … , David A. Stoltz, Michael J. Welsh
Xiao Xiao Tang, … , David A. Stoltz, Michael J. Welsh
Published January 25, 2016
Citation Information: J Clin Invest. 2016;126(3):879-891. https://doi.org/10.1172/JCI83922.
View: Text | PDF

Acidic pH increases airway surface liquid viscosity in cystic fibrosis

  • Text
  • PDF
Abstract

Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF.

Authors

Xiao Xiao Tang, Lynda S. Ostedgaard, Mark J. Hoegger, Thomas O. Moninger, Philip H. Karp, James D. McMenimen, Biswa Choudhury, Ajit Varki, David A. Stoltz, Michael J. Welsh

×

ART influences HIV persistence in the female reproductive tract and cervicovaginal secretions
Rikke Olesen, … , Angela Wahl, J. Victor Garcia
Rikke Olesen, … , Angela Wahl, J. Victor Garcia
Published February 8, 2016
Citation Information: J Clin Invest. 2016;126(3):892-904. https://doi.org/10.1172/JCI64212.
View: Text | PDF

ART influences HIV persistence in the female reproductive tract and cervicovaginal secretions

  • Text
  • PDF
Abstract

The recently completed HIV prevention trials network study 052 is a landmark collaboration demonstrating that HIV transmission in discordant couples can be dramatically reduced by treating the infected individual with antiretroviral therapy (ART). However, the cellular and virological events that occur in the female reproductive tract (FRT) during ART that result in such a drastic decrease in transmission were not studied and remain unknown. Here, we implemented an in vivo model of ART in BM/liver/thymus (BLT) humanized mice in order to better understand the ability of ART to prevent secondary HIV transmission. We demonstrated that the entire FRT of BLT mice is reconstituted with human CD4+ cells that are shed into cervicovaginal secretions (CVS). A high percentage of the CD4+ T cells in the FRT and CVS expressed CCR5 and therefore are potential HIV target cells. Infection with HIV increased the numbers of CD4+ and CD8+ T cells in CVS of BLT mice. Furthermore, HIV was present in CVS during infection. Finally, we evaluated the effect of ART on HIV levels in the FRT and CVS and demonstrated that ART can efficiently suppress cell-free HIV-RNA in CVS, despite residual levels of HIV-RNA+ cells in both the FRT and CVS.

Authors

Rikke Olesen, Michael D. Swanson, Martina Kovarova, Tomonori Nochi, Morgan Chateau, Jenna B. Honeycutt, Julie M. Long, Paul W. Denton, Michael G. Hudgens, Amy Richardson, Martin Tolstrup, Lars Østergaard, Angela Wahl, J. Victor Garcia

×

Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis
Jaclyn Andricovich, … , Adlen Foudi, Alexandros Tzatsos
Jaclyn Andricovich, … , Adlen Foudi, Alexandros Tzatsos
Published January 25, 2016
Citation Information: J Clin Invest. 2016;126(3):905-920. https://doi.org/10.1172/JCI84014.
View: Text | PDF

Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis

  • Text
  • PDF
Abstract

The development of the hematopoietic system is a dynamic process that is controlled by the interplay between transcriptional and epigenetic networks to determine cellular identity. These networks are critical for lineage specification and are frequently dysregulated in leukemias. Here, we identified histone demethylase KDM2B as a critical regulator of definitive hematopoiesis and lineage commitment of murine hematopoietic stem and progenitor cells (HSPCs). RNA sequencing of Kdm2b-null HSPCs and genome-wide ChIP studies in human leukemias revealed that KDM2B cooperates with polycomb and trithorax complexes to regulate differentiation, lineage choice, cytokine signaling, and cell cycle. Furthermore, we demonstrated that KDM2B exhibits a dichotomous role in hematopoietic malignancies. Specifically, we determined that KDM2B maintains lymphoid leukemias, but restrains RAS-driven myeloid transformation. Our study reveals that KDM2B is an important mediator of hematopoietic cell development and has opposing roles in tumor progression that are dependent on cellular context.

Authors

Jaclyn Andricovich, Yan Kai, Weiqun Peng, Adlen Foudi, Alexandros Tzatsos

×

Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma
Nicolas Jacquelot, … , Alexander Eggermont, Laurence Zitvogel
Nicolas Jacquelot, … , Alexander Eggermont, Laurence Zitvogel
Published February 8, 2016
Citation Information: J Clin Invest. 2016;126(3):921-937. https://doi.org/10.1172/JCI80071.
View: Text | PDF

Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma

  • Text
  • PDF
Abstract

Melanoma prognosis is dictated by tumor-infiltrating lymphocytes, the migratory and functional behavior of which is guided by chemokine or cytokine gradients. Here, we retrospectively analyzed the expression patterns of 9 homing receptors (CCR/CXCR) in naive and memory CD4+ and CD8+ T lymphocytes in 57 patients with metastatic melanoma (MMel) with various sites of metastases to evaluate whether T cell CCR/CXCR expression correlates with intratumoral accumulation, metastatic progression, and/or overall survival (OS). Homing receptor expression on lymphocytes strongly correlated with MMel dissemination. Loss of CCR6 or CXCR3, but not cutaneous lymphocyte antigen (CLA), on circulating T cell subsets was associated with skin or lymph node metastases, loss of CXCR4, CXCR5, and CCR9 corresponded with lung involvement, and a rise in CCR10 or CD103 was associated with widespread dissemination. High frequencies of CD8+CCR9+ naive T cells correlated with prolonged OS, while neutralizing the CCR9/CCL25 axis in mice stimulated tumor progression. The expansion of CLA-expressing effector memory CD8+ T cells in response to a single administration of CTLA4 blockade predicted disease control at 3 months in 47 patients with MMel. Thus, specific CCR/CXCR expression patterns on circulating T lymphocytes may guide potential diagnostic and therapeutic approaches.

Authors

Nicolas Jacquelot, David P. Enot, Caroline Flament, Nadège Vimond, Carolin Blattner, Jonathan M. Pitt, Takahiro Yamazaki, María Paula Roberti, Romain Daillère, Marie Vétizou, Vichnou Poirier-Colame, Michaëla Semeraro, Anne Caignard, Craig L. Slingluff Jr., Federica Sallusto, Sylvie Rusakiewicz, Benjamin Weide, Aurélien Marabelle, Holbrook Kohrt, Stéphane Dalle, Andréa Cavalcanti, Guido Kroemer, Anna Maria Di Giacomo, Michele Maio, Phillip Wong, Jianda Yuan, Jedd Wolchok, Viktor Umansky, Alexander Eggermont, Laurence Zitvogel

×

Temporal integration of light flashes by the human circadian system
Raymond P. Najjar, Jamie M. Zeitzer
Raymond P. Najjar, Jamie M. Zeitzer
Published February 8, 2016
Citation Information: J Clin Invest. 2016;126(3):938-947. https://doi.org/10.1172/JCI82306.
View: Text | PDF Clinical Research and Public Health

Temporal integration of light flashes by the human circadian system

  • Text
  • PDF
Abstract

BACKGROUND. Beyond image formation, the light that is detected by retinal photoreceptors influences subcortical functions, including circadian timing, sleep, and arousal. The physiology of nonimage-forming (NIF) photoresponses in humans is not well understood; therefore, the development of therapeutic interventions based on this physiology, such as bright light therapy to treat chronobiological disorders, remains challenging.

METHODS. Thirty-nine participants were exposed to 60 minutes of either continuous light (n = 8) or sequences of 2-millisecond light flashes (n = 31) with different interstimulus intervals (ISIs; ranging from 2.5 to 240 seconds). Melatonin phase shift and suppression, along with changes in alertness and sleepiness, were assessed.

RESULTS. We determined that the human circadian system integrates flash sequences in a nonlinear fashion with a linear rise to a peak response (ISI = 7.6 ± 0.53 seconds) and a power function decrease following the peak of responsivity. At peak ISI, flashes were at least 2-fold more effective in phase delaying the circadian system as compared with exposure to equiluminous continuous light 3,800 times the duration. Flashes did not change melatonin concentrations or alertness in an ISI-dependent manner.

CONCLUSION. We have demonstrated that intermittent light is more effective than continuous light at eliciting circadian changes. These findings cast light on the phenomenology of photic integration and suggest a dichotomous retinohypothalamic network leading to circadian phase shifting and other NIF photoresponses. Further clinical trials are required to judge the practicality of light flash protocols.

TRIAL REGISTRATION. Clinicaltrials.gov NCT01119365.

FUNDING. National Heart, Lung, and Blood Institute (1R01HL108441-01A1) and Department of Veterans Affairs Sierra Pacific Mental Illness Research, Education, and Clinical Center.

Authors

Raymond P. Najjar, Jamie M. Zeitzer

×

FOXE3 mutations predispose to thoracic aortic aneurysms and dissections
Shao-Qing Kuang, … , Milan Jamrich, Dianna M. Milewicz
Shao-Qing Kuang, … , Milan Jamrich, Dianna M. Milewicz
Published February 8, 2016
Citation Information: J Clin Invest. 2016;126(3):948-961. https://doi.org/10.1172/JCI83778.
View: Text | PDF

FOXE3 mutations predispose to thoracic aortic aneurysms and dissections

  • Text
  • PDF
Abstract

The ascending thoracic aorta is designed to withstand biomechanical forces from pulsatile blood. Thoracic aortic aneurysms and acute aortic dissections (TAADs) occur as a result of genetically triggered defects in aortic structure and a dysfunctional response to these forces. Here, we describe mutations in the forkhead transcription factor FOXE3 that predispose mutation-bearing individuals to TAAD. We performed exome sequencing of a large family with multiple members with TAADs and identified a rare variant in FOXE3 with an altered amino acid in the DNA-binding domain (p.Asp153His) that segregated with disease in this family. Additional pathogenic FOXE3 variants were identified in unrelated TAAD families. In mice, Foxe3 deficiency reduced smooth muscle cell (SMC) density and impaired SMC differentiation in the ascending aorta. Foxe3 expression was induced in aortic SMCs after transverse aortic constriction, and Foxe3 deficiency increased SMC apoptosis and ascending aortic rupture with increased aortic pressure. These phenotypes were rescued by inhibiting p53 activity, either by administration of a p53 inhibitor (pifithrin-α), or by crossing Foxe3–/– mice with p53–/– mice. Our data demonstrate that FOXE3 mutations lead to a reduced number of aortic SMCs during development and increased SMC apoptosis in the ascending aorta in response to increased biomechanical forces, thus defining an additional molecular pathway that leads to familial thoracic aortic disease.

Authors

Shao-Qing Kuang, Olga Medina-Martinez, Dong-chuan Guo, Limin Gong, Ellen S. Regalado, Corey L. Reynolds, Catherine Boileau, Guillaume Jondeau, Siddharth K. Prakash, Callie S. Kwartler, Lawrence Yang Zhu, Andrew M. Peters, Xue-Yan Duan, National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC) Investigators, National Heart, Lung, and Blood Institute (NHLBI) Grand Opportunity (GO) Exome Sequencing Project (ESP), Michael J. Bamshad, Jay Shendure, Debbie A. Nickerson, Regie L. Santos-Cortez, Xiurong Dong, Suzanne M. Leal, Mark W. Majesky, Eric C. Swindell, Milan Jamrich, Dianna M. Milewicz

×

FGF23 signaling impairs neutrophil recruitment and host defense during CKD
Jan Rossaint, … , Mark Unruh, Alexander Zarbock
Jan Rossaint, … , Mark Unruh, Alexander Zarbock
Published February 15, 2016
Citation Information: J Clin Invest. 2016;126(3):962-974. https://doi.org/10.1172/JCI83470.
View: Text | PDF

FGF23 signaling impairs neutrophil recruitment and host defense during CKD

  • Text
  • PDF
Abstract

Chronic kidney disease (CKD) has been associated with impaired host response and increased susceptibility to infections. Leukocyte recruitment during inflammation must be tightly regulated to protect the host against pathogens. FGF23 levels are increased in blood during CKD, and levels of this hormone have been associated with a variety of adverse effects in CKD patients. Here, we have shown that CKD impairs leukocyte recruitment into inflamed tissue and host defense in mice and humans. FGF23 neutralization during CKD in murine models restored leukocyte recruitment and host defense. Intravital microscopy of animals with chronic kidney failure showed that FGF23 inhibits chemokine-activated leukocyte arrest on the endothelium, and downregulation of FGF receptor 2 (FGFR2) on PMNs rescued host defense in these mice. In vitro, FGF23 inhibited PMN adhesion, arrest under flow, and transendothelial migration. Mechanistically, FGF23 binding to FGFR2 counteracted selectin- and chemokine-triggered β2 integrin activation on PMNs by activating protein kinase A (PKA) and inhibiting activation of the small GTPase Rap1. Moreover, knockdown of PKA abolished the inhibitory effect of FGF23 on integrin activation. Together, our data reveal that FGF23 acts directly on PMNs and dampens host defense by direct interference with chemokine signaling and integrin activation.

Authors

Jan Rossaint, Jessica Oehmichen, Hugo Van Aken, Stefan Reuter, Hermann J. Pavenstädt, Melanie Meersch, Mark Unruh, Alexander Zarbock

×

Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells
Bin Zhang, … , Wei Tong, Ravi Bhatia
Bin Zhang, … , Wei Tong, Ravi Bhatia
Published February 15, 2016
Citation Information: J Clin Invest. 2016;126(3):975-991. https://doi.org/10.1172/JCI79196.
View: Text | PDF

Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells

  • Text
  • PDF
Abstract

Chronic myelogenous leukemia (CML) results from transformation of a long-term hematopoietic stem cell (LTHSC) by expression of the BCR-ABL fusion gene. However, BCR-ABL–expressing LTHSCs are heterogeneous in their capacity as leukemic stem cells (LSCs). Although discrepancies in proliferative, self-renewal, and differentiation properties of normal LTHSCs are being increasingly recognized, the mechanisms underlying heterogeneity of leukemic LTHSCs are poorly understood. Using a CML mouse model, we identified gene expression differences between leukemic and nonleukemic LTHSCs. Expression of the thrombopoietin (THPO) receptor MPL was elevated in leukemic LTHSC populations. Compared with LTHSCs with low MPL expression, LTHSCs with high MPL expression showed enhanced JAK/STAT signaling and proliferation in response to THPO in vitro and increased leukemogenic capacity in vivo. Although both G0 and S phase subpopulations were increased in LTHSCs with high MPL expression, LSC capacity was restricted to quiescent cells. Inhibition of MPL expression in CML LTHSCs reduced THPO-induced JAK/STAT signaling and leukemogenic potential. These same phenotypes were also present in LTHSCs from patients with CML, and patient LTHSCs with high MPL expression had reduced sensitivity to BCR-ABL tyrosine kinase inhibitor treatment but increased sensitivity to JAK inhibitors. Together, our studies identify MPL expression levels as a key determinant of heterogeneous leukemia-initiating capacity and drug sensitivity of CML LTHSCs and suggest that high MPL–expressing CML stem cells are potential targets for therapy.

Authors

Bin Zhang, Ling Li, Yinwei Ho, Min Li, Guido Marcucci, Wei Tong, Ravi Bhatia

×

Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis
Erik Schoenmakers, … , Dolph Hatfield, Krishna Chatterjee
Erik Schoenmakers, … , Dolph Hatfield, Krishna Chatterjee
Published February 8, 2016
Citation Information: J Clin Invest. 2016;126(3):992-996. https://doi.org/10.1172/JCI84747.
View: Text | PDF Brief Report

Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis

  • Text
  • PDF
Abstract

Selenium is a trace element that is essential for human health and is incorporated into more than 25 human selenocysteine-containing (Sec-containing) proteins via unique Sec-insertion machinery that includes a specific, nuclear genome–encoded, transfer RNA (tRNA[Ser]Sec). Here, we have identified a human tRNA[Ser]Sec mutation in a proband who presented with a variety of symptoms, including abdominal pain, fatigue, muscle weakness, and low plasma levels of selenium. This mutation resulted in a marked reduction in expression of stress-related, but not housekeeping, selenoproteins. Evaluation of primary cells from the homozygous proband and a heterozygous parent indicated that the observed deficit in stress-related selenoprotein production is likely mediated by reduced expression and diminished 2′-O-methylribosylation at uridine 34 in mutant tRNA[Ser]Sec. Moreover, this methylribosylation defect was restored by cellular complementation with normal tRNA[Ser]Sec. This study identifies a tRNA mutation that selectively impairs synthesis of stress-related selenoproteins and demonstrates the importance of tRNA modification for normal selenoprotein synthesis.

Authors

Erik Schoenmakers, Bradley Carlson, Maura Agostini, Carla Moran, Odelia Rajanayagam, Elena Bochukova, Ryuta Tobe, Rachel Peat, Evelien Gevers, Francesco Muntoni, Pascale Guicheney, Nadia Schoenmakers, Sadaf Farooqi, Greta Lyons, Dolph Hatfield, Krishna Chatterjee

×

MLL-AF9– and HOXA9-mediated acute myeloid leukemia stem cell self-renewal requires JMJD1C
Nan Zhu, … , Robert G. Roeder, Scott A. Armstrong
Nan Zhu, … , Robert G. Roeder, Scott A. Armstrong
Published February 15, 2016
Citation Information: J Clin Invest. 2016;126(3):997-1011. https://doi.org/10.1172/JCI82978.
View: Text | PDF

MLL-AF9– and HOXA9-mediated acute myeloid leukemia stem cell self-renewal requires JMJD1C

  • Text
  • PDF
Abstract

Self-renewal is a hallmark of both hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs); therefore, the identification of mechanisms that are required for LSC, but not HSC, function could provide therapeutic opportunities that are more effective and less toxic than current treatments. Here, we employed an in vivo shRNA screen and identified jumonji domain–containing protein JMJD1C as an important driver of MLL-AF9 leukemia. Using a conditional mouse model, we showed that loss of JMJD1C substantially decreased LSC frequency and caused differentiation of MLL-AF9– and homeobox A9–driven (HOXA9-driven) leukemias. We determined that JMJD1C directly interacts with HOXA9 and modulates a HOXA9-controlled gene-expression program. In contrast, loss of JMJD1C led to only minor defects in blood homeostasis and modest effects on HSC self-renewal. Together, these data establish JMJD1C as an important mediator of MLL-AF9– and HOXA9-driven LSC function that is largely dispensable for HSC function.

Authors

Nan Zhu, Mo Chen, Rowena Eng, Joshua DeJong, Amit U. Sinha, Noushin F. Rahnamay, Richard Koche, Fatima Al-Shahrour, Janna C. Minehart, Chun-Wei Chen, Aniruddha J. Deshpande, Haiming Xu, S. Haihua Chu, Benjamin L. Ebert, Robert G. Roeder, Scott A. Armstrong

×

Measles virus nucleocapsid protein increases osteoblast differentiation in Paget’s disease
Jumpei Teramachi, … , Noriyoshi Kurihara, G. David Roodman
Jumpei Teramachi, … , Noriyoshi Kurihara, G. David Roodman
Published February 15, 2016
Citation Information: J Clin Invest. 2016;126(3):1012-1022. https://doi.org/10.1172/JCI82012.
View: Text | PDF

Measles virus nucleocapsid protein increases osteoblast differentiation in Paget’s disease

  • Text
  • PDF
Abstract

Paget’s disease (PD) is characterized by focal and dramatic bone resorption and formation. Treatments that target osteoclasts (OCLs) block both pagetic bone resorption and formation; therefore, PD offers key insights into mechanisms that couple bone resorption and formation. Here, we evaluated OCLs from 3 patients with PD and determined that measles virus nucleocapsid protein (MVNP) was expressed in 70% of these OCLs. Moreover, transgenic mice with OCL-specific expression of MVNP (MVNP mice) developed PD-like bone lesions that required MVNP-dependent induction of high IL-6 expression levels in OCLs. In contrast, mice harboring a knockin of p62P394L (p62-KI mice), which is the most frequent PD-associated mutation, exhibited increased bone resorption, but not formation. Evaluation of OCLs from MVNP, p62-KI, and WT mice revealed increased IGF1 expression in MVNP-expressing OCLs that resulted from the high IL-6 expression levels in these cells. IL-6, in turn, increased the expression of coupling factors, specifically ephrinB2 on OCLs and EphB4 on osteoblasts (OBs). IGF1 enhanced ephrinB2 expression on OCLs and OB differentiation. Importantly, ephrinB2 and IGF1 levels were increased in MVNP-expressing OCLs from patients with PD and MVNP-transduced human OCLs compared with levels detected in controls. Further, anti-IGF1 or anti-IGF1R blocked Runx2 and osteocalcin upregulation in OBs cocultured with MVNP-expressing OCLs. These results suggest that in PD, MVNP upregulates IL-6 and IGF1 in OCLs to increase ephrinB2-EphB4 coupling and bone formation.

Authors

Jumpei Teramachi, Yuki Nagata, Khalid Mohammad, Yuji Inagaki, Yasuhisa Ohata, Theresa Guise, Laëtitia Michou, Jacques P. Brown, Jolene J. Windle, Noriyoshi Kurihara, G. David Roodman

×

Blocking mitochondrial calcium release in Schwann cells prevents demyelinating neuropathies
Sergio Gonzalez, … , Guy Lenaers, Nicolas Tricaud
Sergio Gonzalez, … , Guy Lenaers, Nicolas Tricaud
Published February 15, 2016
Citation Information: J Clin Invest. 2016;126(3):1023-1038. https://doi.org/10.1172/JCI84505.
View: Text | PDF | Corrigendum | Expression of Concern | Retraction

Blocking mitochondrial calcium release in Schwann cells prevents demyelinating neuropathies

  • Text
  • PDF
Abstract

Schwann cells produce myelin sheath around peripheral nerve axons. Myelination is critical for rapid propagation of action potentials, as illustrated by the large number of acquired and hereditary peripheral neuropathies, such as diabetic neuropathy or Charcot-Marie-Tooth diseases, that are commonly associated with a process of demyelination. However, the early molecular events that trigger the demyelination program in these diseases remain unknown. Here, we used virally delivered fluorescent probes and in vivo time-lapse imaging in a mouse model of demyelination to investigate the underlying mechanisms of the demyelination process. We demonstrated that mitochondrial calcium released by voltage-dependent anion channel 1 (VDAC1) after sciatic nerve injury triggers Schwann cell demyelination via ERK1/2, p38, JNK, and c-JUN activation. In diabetic mice, VDAC1 activity was altered, resulting in a mitochondrial calcium leak in Schwann cell cytoplasm, thereby priming the cell for demyelination. Moreover, reduction of mitochondrial calcium release, either by shRNA-mediated VDAC1 silencing or pharmacological inhibition, prevented demyelination, leading to nerve conduction and neuromuscular performance recovery in rodent models of diabetic neuropathy and Charcot-Marie-Tooth diseases. Therefore, this study identifies mitochondria as the early key factor in the molecular mechanism of peripheral demyelination and opens a potential opportunity for the treatment of demyelinating peripheral neuropathies.

Authors

Sergio Gonzalez, Jade Berthelot, Jennifer Jiner, Claire Perrin-Tricaud, Ruani Fernando, Roman Chrast, Guy Lenaers, Nicolas Tricaud

×

T regulatory cell chemokine production mediates pathogenic T cell attraction and suppression
Scott J. Patterson, … , Constadina Panagiotopoulos, Megan K. Levings
Scott J. Patterson, … , Constadina Panagiotopoulos, Megan K. Levings
Published February 8, 2016
Citation Information: J Clin Invest. 2016;126(3):1039-1051. https://doi.org/10.1172/JCI83987.
View: Text | PDF

T regulatory cell chemokine production mediates pathogenic T cell attraction and suppression

  • Text
  • PDF
Abstract

T regulatory cells (Tregs) control immune homeostasis by preventing inappropriate responses to self and nonharmful foreign antigens. Tregs use multiple mechanisms to control immune responses, all of which require these cells to be near their targets of suppression; however, it is not known how Treg-to-target proximity is controlled. Here, we found that Tregs attract CD4+ and CD8+ T cells by producing chemokines. Specifically, Tregs produced both CCL3 and CCL4 in response to stimulation, and production of these chemokines was critical for migration of target T cells, as Tregs from Ccl3–/– mice, which are also deficient for CCL4 production, did not promote migration. Moreover, CCR5 expression by target T cells was required for migration of these cells to supernatants conditioned by Tregs. Tregs deficient for expression of CCL3 and CCL4 were impaired in their ability to suppress experimental autoimmune encephalomyelitis or islet allograft rejection in murine models. Moreover, Tregs from subjects with established type 1 diabetes were impaired in their ability to produce CCL3 and CCL4. Together, these results demonstrate a previously unappreciated facet of Treg function and suggest that chemokine secretion by Tregs is a fundamental aspect of their therapeutic effect in autoimmunity and transplantation.

Authors

Scott J. Patterson, Anne M. Pesenacker, Adele Y. Wang, Jana Gillies, Majid Mojibian, Kim Morishita, Rusung Tan, Timothy J. Kieffer, C. Bruce Verchere, Constadina Panagiotopoulos, Megan K. Levings

×

Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers
Iñigo Landa, … , Ian Ganly, James A. Fagin
Iñigo Landa, … , Ian Ganly, James A. Fagin
Published February 15, 2016
Citation Information: J Clin Invest. 2016;126(3):1052-1066. https://doi.org/10.1172/JCI85271.
View: Text | PDF Clinical Research and Public Health

Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers

  • Text
  • PDF
Abstract

BACKGROUND. Poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) are rare and frequently lethal tumors that so far have not been subjected to comprehensive genetic characterization.

METHODS. We performed next-generation sequencing of 341 cancer genes from 117 patient-derived PDTCs and ATCs and analyzed the transcriptome of a representative subset of 37 tumors. Results were analyzed in the context of The Cancer Genome Atlas study (TCGA study) of papillary thyroid cancers (PTC).

RESULTS. Compared to PDTCs, ATCs had a greater mutation burden, including a higher frequency of mutations in TP53, TERT promoter, PI3K/AKT/mTOR pathway effectors, SWI/SNF subunits, and histone methyltransferases. BRAF and RAS were the predominant drivers and dictated distinct tropism for nodal versus distant metastases in PDTC. RAS and BRAF sharply distinguished between PDTCs defined by the Turin (PDTC-Turin) versus MSKCC (PDTC-MSK) criteria, respectively. Mutations of EIF1AX, a component of the translational preinitiation complex, were markedly enriched in PDTCs and ATCs and had a striking pattern of co-occurrence with RAS mutations. While TERT promoter mutations were rare and subclonal in PTCs, they were clonal and highly prevalent in advanced cancers. Application of the TCGA-derived BRAF-RAS score (a measure of MAPK transcriptional output) revealed a preserved relationship with BRAF/RAS mutation in PDTCs, whereas ATCs were BRAF-like irrespective of driver mutation.

CONCLUSIONS. These data support a model of tumorigenesis whereby PDTCs and ATCs arise from well-differentiated tumors through the accumulation of key additional genetic abnormalities, many of which have prognostic and possible therapeutic relevance. The widespread genomic disruptions in ATC compared with PDTC underscore their greater virulence and higher mortality.

FUNDING. This work was supported in part by NIH grants CA50706, CA72597, P50-CA72012, P30-CA008748, and 5T32-CA160001; the Lefkovsky Family Foundation; the Society of Memorial Sloan Kettering; the Byrne fund; and Cycle for Survival.

Authors

Iñigo Landa, Tihana Ibrahimpasic, Laura Boucai, Rileen Sinha, Jeffrey A. Knauf, Ronak H. Shah, Snjezana Dogan, Julio C. Ricarte-Filho, Gnana P. Krishnamoorthy, Bin Xu, Nikolaus Schultz, Michael F. Berger, Chris Sander, Barry S. Taylor, Ronald Ghossein, Ian Ganly, James A. Fagin

×

A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis
Haiyang Yu, … , Mark J. Daly, Andrey S. Shaw
Haiyang Yu, … , Mark J. Daly, Andrey S. Shaw
Published February 22, 2016
Citation Information: J Clin Invest. 2016;126(3):1067-1078. https://doi.org/10.1172/JCI82592.
View: Text | PDF | Erratum

A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis

  • Text
  • PDF
Abstract

Focal segmental glomerulosclerosis (FSGS) is a syndrome that involves kidney podocyte dysfunction and causes chronic kidney disease. Multiple factors including chemical toxicity, inflammation, and infection underlie FSGS; however, highly penetrant disease genes have been identified in a small fraction of patients with a family history of FSGS. Variants of apolipoprotein L1 (APOL1) have been linked to FSGS in African Americans with HIV or hypertension, supporting the proposal that genetic factors enhance FSGS susceptibility. Here, we used sequencing to investigate whether genetics plays a role in the majority of FSGS cases that are identified as primary or sporadic FSGS and have no known cause. Given the limited number of biopsy-proven cases with ethnically matched controls, we devised an analytic strategy to identify and rank potential candidate genes and used an animal model for validation. Nine candidate FSGS susceptibility genes were identified in our patient cohort, and three were validated using a high-throughput mouse method that we developed. Specifically, we introduced a podocyte-specific, doxycycline-inducible transactivator into a murine embryonic stem cell line with an FSGS-susceptible genetic background that allows shRNA-mediated targeting of candidate genes in the adult kidney. Our analysis supports a broader role for genetic susceptibility of both sporadic and familial cases of FSGS and provides a tool to rapidly evaluate candidate FSGS-associated genes.

Authors

Haiyang Yu, Mykyta Artomov, Sebastian Brähler, M. Christine Stander, Ghaidan Shamsan, Matthew G. Sampson, J. Michael White, Matthias Kretzler, Jeffrey H. Miner, Sanjay Jain, Cheryl A. Winkler, Robi D. Mitra, Jeffrey B. Kopp, Mark J. Daly, Andrey S. Shaw

×

In situ analysis of intrahepatic virological events in chronic hepatitis B virus infection
Xiaonan Zhang, … , Zhanqing Zhang, Zhenghong Yuan
Xiaonan Zhang, … , Zhanqing Zhang, Zhenghong Yuan
Published February 22, 2016
Citation Information: J Clin Invest. 2016;126(3):1079-1092. https://doi.org/10.1172/JCI83339.
View: Text | PDF

In situ analysis of intrahepatic virological events in chronic hepatitis B virus infection

  • Text
  • PDF
Abstract

Persistent hepatitis B virus (HBV) infection is established by the formation of an intranuclear pool of covalently closed circular DNA (cccDNA) in the liver. Very little is known about the intrahepatic distribution of HBV cccDNA in infected patients, particularly at the single-cell level. Here, we established a highly sensitive and specific ISH assay for the detection of HBV RNA, DNA, and cccDNA. The specificity of our cccDNA probe set was confirmed by its strict intranuclear signal and by a series of Southern blot analyses. Use of our in situ assay in conjunction with IHC or immunofluorescence uncovered a surprisingly mosaic distribution of viral antigens and nucleic acids. Most strikingly, a mutually exclusive pattern was found between HBV surface antigen–positive (HBsA-positive) and HBV DNA– and cccDNA-positive cells. A longitudinal observation of patients over a 1-year period of adeforvir therapy confirmed the persistence of a nuclear reservoir of viral DNA, although cytoplasmic DNA was effectively depleted in these individuals. In conclusion, our method for detecting viral nucleic acids, including cccDNA, with single-cell resolution provides a means for monitoring intrahepatic virological events in chronic HBV infection. More important, our observations unravel the complexity of the HBV life cycle in vivo.

Authors

Xiaonan Zhang, Wei Lu, Ye Zheng, Weixia Wang, Lu Bai, Liang Chen, Yanling Feng, Zhanqing Zhang, Zhenghong Yuan

×

Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis
Thomas R. Lerner, … , Gareth Griffiths, Maximiliano G. Gutierrez
Thomas R. Lerner, … , Gareth Griffiths, Maximiliano G. Gutierrez
Published February 22, 2016
Citation Information: J Clin Invest. 2016;126(3):1093-1108. https://doi.org/10.1172/JCI83379.
View: Text | PDF

Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis

  • Text
  • PDF
Abstract

In extrapulmonary tuberculosis, the most common site of infection is within the lymphatic system, and there is growing recognition that lymphatic endothelial cells (LECs) are involved in immune function. Here, we identified LECs, which line the lymphatic vessels, as a niche for Mycobacterium tuberculosis in the lymph nodes of patients with tuberculosis. In cultured primary human LECs (hLECs), we determined that M. tuberculosis replicates both in the cytosol and within autophagosomes, but the bacteria failed to replicate when the virulence locus RD1 was deleted. Activation by IFN-γ induced a cell-autonomous response in hLECs via autophagy and NO production that restricted M. tuberculosis growth. Thus, depending on the activation status of LECs, autophagy can both promote and restrict replication. Together, these findings reveal a previously unrecognized role for hLECs and autophagy in tuberculosis pathogenesis and suggest that hLECs are a potential niche for M. tuberculosis that allows establishment of persistent infection in lymph nodes.

Authors

Thomas R. Lerner, Cristiane de Souza Carvalho-Wodarz, Urska Repnik, Matthew R.G. Russell, Sophie Borel, Collin R. Diedrich, Manfred Rohde, Helen Wainwright, Lucy M. Collinson, Robert J. Wilkinson, Gareth Griffiths, Maximiliano G. Gutierrez

×

Xenotropic retrovirus Bxv1 in human pancreatic β cell lines
Jeannette S. Kirkegaard, … , Claude Rescan, Olivier Albagli
Jeannette S. Kirkegaard, … , Claude Rescan, Olivier Albagli
Published February 22, 2016
Citation Information: J Clin Invest. 2016;126(3):1109-1113. https://doi.org/10.1172/JCI83573.
View: Text | PDF Brief Report

Xenotropic retrovirus Bxv1 in human pancreatic β cell lines

  • Text
  • PDF
Abstract

It has been reported that endogenous retroviruses can contaminate human cell lines that have been passaged as xenotransplants in immunocompromised mice. We previously developed and described 2 human pancreatic β cell lines (EndoC-βH1 and EndoC-βH2) that were generated in this way. Here, we have shown that B10 xenotropic virus 1 (Bxv1), a xenotropic endogenous murine leukemia virus (MuLV), is present in these 2 recently described cell lines. We determined that Bxv1 was also present in SCID mice that were used for in vivo propagation of EndoC-βH1/2 cells, suggesting that contamination occurred during xenotransplantation. EndoC-βH1/2 cells released Bxv1 particles that propagated to human 293T and Mus dunni cells. Mobilization assays demonstrated that Bxv1 transcomplements defective MuLV-based retrovectors. In contrast, common rodent β cell lines, rat INS-1E and RIN-5F cells and mouse MIN6 and βTC3 cells, displayed either no or extremely weak xenotropic helper activity toward MuLV-based retrovectors, although xenotropic retrovirus sequences and transcripts were detected in both mouse cell lines. Bxv1 propagation from EndoC-βH1/2 to 293T cells occurred only under optimized conditions and was overall poorly efficient. Thus, although our data imply that MuLV-based retrovectors should be cautiously used in EndoC-βH1/2 cells, our results indicate that an involuntary propagation of Bxv1 from these cells can be easily avoided with good laboratory practices.

Authors

Jeannette S. Kirkegaard, Philippe Ravassard, Signe Ingvarsen, Marc Diedisheim, Emilie Bricout-Neveu, Mads Grønborg, Thomas Frogne, Raphael Scharfmann, Ole D. Madsen, Claude Rescan, Olivier Albagli

×

Gonadal steroid–dependent effects on bone turnover and bone mineral density in men
Joel S. Finkelstein, … , Jonathan M. Youngner, Elaine W. Yu
Joel S. Finkelstein, … , Jonathan M. Youngner, Elaine W. Yu
Published February 22, 2016
Citation Information: J Clin Invest. 2016;126(3):1114-1125. https://doi.org/10.1172/JCI84137.
View: Text | PDF Clinical Research and Public Health

Gonadal steroid–dependent effects on bone turnover and bone mineral density in men

  • Text
  • PDF
Abstract

BACKGROUND. Severe gonadal steroid deficiency induces bone loss in adult men; however, the specific roles of androgen and estrogen deficiency in hypogonadal bone loss are unclear. Additionally, the threshold levels of testosterone and estradiol that initiate bone loss are uncertain.

METHODS. One hundred ninety-eight healthy men, ages 20–50, received goserelin acetate, which suppresses endogenous gonadal steroid production, and were randomized to treatment with 0, 1.25, 2.5, 5, or 10 grams of testosterone gel daily for 16 weeks. An additional cohort of 202 men was randomized to receive these treatments plus anastrozole, which suppresses conversion of androgens to estrogens. Thirty-seven men served as controls and received placebos for goserelin and testosterone. Changes in bone turnover markers, bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA), and BMD by quantitative computed tomography (QCT) were assessed in all men. Bone microarchitecture was assessed in 100 men.

RESULTS. As testosterone dosage decreased, the percent change in C-telopeptide increased. These increases were considerably greater when aromatization of testosterone to estradiol was also suppressed, suggesting effects of both testosterone and estradiol deficiency. Decreases in DXA BMD were observed when aromatization was suppressed but were modest in most groups. QCT spine BMD fell substantially in all testosterone-dose groups in which aromatization was also suppressed, and this decline was independent of testosterone dose. Estradiol deficiency disrupted cortical microarchitecture at peripheral sites. Estradiol levels above 10 pg/ml and testosterone levels above 200 ng/dl were generally sufficient to prevent increases in bone resorption and decreases in BMD in men.

CONCLUSIONS. Estrogens primarily regulate bone homeostasis in adult men, and testosterone and estradiol levels must decline substantially to impact the skeleton.

TRIAL REGISTRATION. ClinicalTrials.gov, NCT00114114.

FUNDING. AbbVie Inc., AstraZeneca Pharmaceuticals LP, NIH.

Authors

Joel S. Finkelstein, Hang Lee, Benjamin Z. Leder, Sherri-Ann M. Burnett-Bowie, David W. Goldstein, Christopher W. Hahn, Sarah C. Hirsch, Alex Linker, Nicholas Perros, Andrew B. Servais, Alexander P. Taylor, Matthew L. Webb, Jonathan M. Youngner, Elaine W. Yu

×

Neonatal thymectomy reveals differentiation and plasticity within human naive T cells
Theo van den Broek, … , Nicolaas J.G. Jansen, Femke van Wijk
Theo van den Broek, … , Nicolaas J.G. Jansen, Femke van Wijk
Published February 22, 2016
Citation Information: J Clin Invest. 2016;126(3):1126-1136. https://doi.org/10.1172/JCI84997.
View: Text | PDF

Neonatal thymectomy reveals differentiation and plasticity within human naive T cells

  • Text
  • PDF
Abstract

The generation of naive T cells is dependent on thymic output, but in adults, the naive T cell pool is primarily maintained by peripheral proliferation. Naive T cells have long been regarded as relatively quiescent cells; however, it was recently shown that IL-8 production is a signatory effector function of naive T cells, at least in newborns. How this functional signature relates to naive T cell dynamics and aging is unknown. Using a cohort of children and adolescents who underwent neonatal thymectomy, we demonstrate that the naive CD4+ T cell compartment in healthy humans is functionally heterogeneous and that this functional diversity is lost after neonatal thymectomy. Thymic tissue regeneration later in life resulted in functional restoration of the naive T cell compartment, implicating the thymus as having functional regenerative capacity. Together, these data shed further light on functional differentiation within the naive T cell compartment and the importance of the thymus in human naive T cell homeostasis and premature aging. In addition, these results affect and alter our current understanding on the identification of truly naive T cells and recent thymic emigrants.

Authors

Theo van den Broek, Eveline M. Delemarre, Willemijn J.M. Janssen, Rutger A.J. Nievelstein, Jasper C. Broen, Kiki Tesselaar, Jose A.M. Borghans, Edward E.S. Nieuwenhuis, Berent J. Prakken, Michal Mokry, Nicolaas J.G. Jansen, Femke van Wijk

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts