In this issue, review articles by Zeng et al. and Smith et al. explore current thoughts on nonopioid targets for treating acute pain and sex differences in the transition from acute to chronic pain. These reviews highlight recent and ongoing research efforts to develop a better understanding of pain, factors involved in the transition to chronic pain, and innovative approaches to pain management. Image credit: Kathleen Sluka (kathleenslukaart.com).
CAR-T cells are a powerful yet expensive tool in cancer immunotherapy. While their use in targeting hematological malignancies is well-established, using a single CAR-T cell therapy to treat both hematological and solid tumors, which can reduce cost, remains largely unexplored. In this study, we identified CD155, an adhesion molecule that is upregulated during tumor progression, as a target for CAR-T cell therapy in both leukemia and solid tumors. We engineered CAR-T cells using human and mouse anti-CD155 antibodies generated from a Berkeley Lights' Beacon platform. These CAR-T cells demonstrated potent anti-tumor activity, significantly reducing tumor burden in preclinical models of acute myeloid leukemia (AML), non-small cell lung cancer (NSCLC), and pancreatic cancer. To reduce potential allogeneic rejection, we generated CAR-T cells using humanized anti-CD155 antibody sequences that retained efficacy. Additionally, murine CAR-T cells targeting mouse CD155 exhibited limited toxic side effects in immunocompetent mice, highlighting the favorable safety profile of this therapy. These findings suggest that CD155 can be targeted by CD155 CAR-T cells safely and effectively, representing an innovative cellular therapeutic strategy that has the potential to expand its scope across both AML and multiple solid tumors, thereby lowering the cost of cellular immunotherapy, especially as allogenic, universal and off-the-shelf CAR-T cell therapies advance to the clinic.
Tianchen Xiong, Ge Wang, Peng Yu, Zhenlong Li, Debao Li, Jianying Zhang, Song Lu, Ruiqi Yang, Xiaolong Lian, Jianhong Mi, Rui Ma, Zhiyao Li, Guido Marcucci, Tingting Zhao, Michael A. Caligiuri, Jianhua Yu
Acute-on-chronic liver failure (ACLF) is a leading cause of global liver-related mortality. Bacterial infection, especially in patients with decompensated cirrhosis (DC), commonly triggers ACLF and is difficult to treat with antibiotics. Therefore, finding alternative strategies for preventing and managing bacterial infection is an urgent priority. Here, we observed that infected DC patients and ACLF mice exhibited lower fecal panose levels than uninfected controls. Megamonas funiformis (M. funiformis), with 4α-glucanosyltransferase (4αGT) as a key enzyme for panose production, was identified as a potential panose producer. Animal experiments demonstrated that panose efficiently reduced liver injury and extended survival in ACLF mice by mitigating bacterial infection. Further results revealed that panose enhanced resistance to bacterial infection by inhibiting oxidative stress-induced gut barrier disruption, thereby limiting bacterial dissemination. Mechanistically, panose interacted with the solute carrier family 7 member 11 (SLC7A11, also known as xCT) protein to boost antioxidant glutathione (GSH) levels in intestinal epithelial cells. These findings highlight panose's potential in preventing bacterial infection, offering a valuable insight into mitigating ACLF progression.
Jiaxin Li, Shihao Xie, Meiling Chen, Changze Hong, Yuqi Chen, Fengyuan Lyu, Niexin Tang, Tianqi Chen, Lingyan Zhao, Weihao Zou, Hongjuan Peng, Jingna Bao, Peng Gu, Bernd Schnabl, Jinjun Chen, Peng Chen
Psoriatic arthritis (PsA) is a multifaceted chronic inflammatory disease affecting the skin, joints, and entheses, and is a major comorbidity of psoriasis. Most patients with PsA present with psoriasis before articular involvement, however, the molecular and cellular mechanisms underlying the link between cutaneous psoriasis and PsA are poorly understood. Here, we found that epidermal-specific SPRY1-deficient mice spontaneously developed PsA-like inflammation involving both the skin and joints. Excessive CXCL10 was secreted by SPRY1-deficient epidermal keratinocytes through enhanced activation of JAK1/2-STAT1 signaling, and CXCL10 blockade attenuated PsA-like inflammation. Of note, CXCL10 was found to bind to CD14, but not CXCR3, to promote the TNF𝜶 production of periarticular CD14hi macrophages via PI3K/AKT and NF-κB signaling pathways. Collectively, this study reveals that SPRY1 deficiency in the epidermis is sufficient to drive both skin and joint inflammation, and identifies keratinocyte-derived CXCL10 and periarticular CD14hi macrophages as critical links in the skin-joint crosstalk leading to PsA. This keratinocyte SPRY1-CXCL10-periarticular CD14hi macrophages-TNFα axis provides valuable insights into the mechanisms underlying the transition from psoriasis to PsA and suggests potential therapeutic targets for preventing this progression.
Fan Xu, Ying-Zhe Cui, Xing-Yu Yang, Yu-Xin Zheng, Xi-Bei Chen, Hao Zhou, Zhao-Yuan Wang, Yuan Zhou, Yi Lu, Ying-Ying Li, Li-Ran Ye, Ni-Chang Fu, Si-Qi Chen, Xue-Yan Chen, Min Zheng, Yong Yang, Xiao-Yong Man
White adipose tissue (WAT) fibrosis occurring in obesity contributes to the inflammatory and metabolic co-morbidities of insulin resistance and type 2 diabetes, yet the mechanisms involved remain poorly understood. Here, we report a role for the broadly conserved microRNA miR-30a as a regulator of WAT fibrosis and systemic glucose metabolism. Mice modified to express miR-30a at elevated levels in adipose tissues maintain insulin sensitivity coupled with reduced fatty liver disease when fed high fat diet. These effects were attributable to cell-autonomous functions of miR-30a that potently increase expression of adipocyte-specific genes. Proteomic screening revealed miR-30a limits pro-fibrotic programs in subcutaneous WAT, at least in part, by repressing PAI-1, a dominant regulator of fibrinolysis and biomarker of insulin resistance. Conversely, mouse adipocytes lacking miR-30a exhibited greater expression of fibrosis markers with disrupted cellular metabolism. Lastly, miR-30a expression negatively correlates with PAI-1 levels in subcutaneous WAT from people with obesity, further supporting an anti-fibrotic role for miR-30a. Together, these findings uncover miR-30a as a critical regulator of adipose tissue fibrosis that predicts metabolically healthy obesity in people and mice.
Pradip K. Saha, Robert Sharp, Aaron R. Cox, Rabie Habib, Michael J. Bolt, Jessica B. Felix, Claudia E. Ramirez Bustamante, Xin Li, Sung Yun Jung, Kang Ho Kim, Kai Sun, Huaizhu Wu, Samuel Klein, Sean M. Hartig
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are used to treat BRCA-mutated (BRCAm) cancer patients; however, resistance has been observed. Therefore, biomarkers to indicate PARPi resistance and combination therapy to overcome that are urgently needed. We identified a high prevalence of activated FGF receptor 3 (FGFR3) in BRCAm triple-negative breast cancer (TNBC) cells with intrinsic and acquired PARPi resistance. FGFR3 phosphorylated PARP1 at tyrosine 158 (Y158) to recruit BRG1 and prolong chromatin-loaded MRE11, thus promoting homologous recombination (HR) to enhance PARPi resistance. FGFR inhibition prolonged PARP trapping and synergized with PARPi in vitro and in vivo. High-level PARP1 Y158 phosphorylation (p-Y158) positively correlated with PARPi resistance in TNBC patient-derived xenograft models, and in PARPi-resistant TNBC patient tumors. These findings reveal that PARP1 p-Y158 facilitates BRG1-mediated HR to resolve the PARP-DNA complex, and PARP1 p-Y158 may indicate PARPi resistance that can be relieved by combining FGFR inhibitors (FGFRi) with PARPi. In summary, we show that FGFRi restores PARP trapping and PARPi antitumor efficacy in PARPi-resistant breast cancer by decreasing HR through the PARP1 p-Y158/BRG1/MRE11 axis, suggesting that PARP1 p-Y158 is a biomarker for PARPi resistance that can be overcome by combining FGFRi with PARPi.
Mei-Kuang Chen, Hirohito Yamaguchi, Yuan Gao, Weiya Xia, Jeffrey T. Chang, Yu-Chun Hsiao, Tewodros W. Shegute, Zong-Shin Lin, Chen-Shiou Wu, Yu-Han Wang, Jennifer K. Litton, Qingqing Ding, Yongkun Wei, Yu-Yi Chu, Funda Meric-Bernstam, Helen Piwnica-Worms, Banu Arun, Jordi Rodon Ahnert, Jinsong Liu, Jun Yao, Wei-Chao Chang, Hung-Ling Wang, Coya Tapia, Constance T. Albarracin, Khandan Keyomarsi, Shao-Chun Wang, Ying-Nai Wang, Gabriel N. Hortobagyi, Chunru Lin, Liuqing Yang, Dihua Yu, Mien-Chie Hung
The complement system executes an evolutionarily ancient innate immune response with important roles in many human diseases, including a variety of conditions involving the kidney, autoimmune disorders, age-related macular degeneration, and more. This series of reviews, curated by Dr. Claudia Kemper, highlights the latest discoveries in complement biology and examines ongoing efforts to target complement therapeutically. From the relatively newly uncovered functions of intracellular complement (complosome) to the complexities involved in using animal models of complementopathies, these reviews convey the challenges of studying complement and developing complement-targeted therapeutics as well as call attention to recent findings that supply momentum to the field.
×