Issue published August 1, 2025 Previous issue

On the cover: Kidney-specific WNK1 enhances responsiveness to potassium

Boyd-Shiwarski et al. report that kidney-specific WNK1 is a scaffolding protein that organizes other proteins within biomolecular condensates called WNK bodies — structures essential for maintaining blood potassium and human health. The cover image shows immunofluorescence staining of WNK bodies (green) in the distal convoluted tubule (magenta) of a mouse kidney during hypokalemia. Image credit: Arohan Subramanya and Cary Boyd-Shiwarski.

Obituary
Abstract

Authors

Ali Shilatifard, Stuart Kornfeld

×
Viewpoint
Reviews
Abstract

As the use of molecular profiling of tumors expands, cancer diagnosis, prognosis, and treatment planning increasingly rely on the information it provides. Although primarily designed to detect somatic variants, next-generation sequencing (NGS) tumor-based profiling also identifies germline DNA alterations, necessitating careful clinical interpretation of the data. Traditionally, germline risk testing has depended on prioritizing individuals based on physical exam findings consistent with known hereditary cancer syndromes, tumor-specific features, age at diagnosis, personal history, and family history. As NGS-based molecular profiling is used increasingly to diagnose, prognosticate, and follow cancer progression, DNA variants that are likely to be of germline origin are identified with increased frequency. Because pathogenic/likely pathogenic germline variants are critical biomarkers for risk stratification and treatment planning, consensus guidelines are expanding to recommend comprehensive germline testing for more cancer patients. This Review highlights the nuances of identifying DNA variants of potential germline origin incidentally at the time of NGS-based molecular profiling and emphasizes key differences between comprehensive germline versus tumor-based platforms, sample types, and analytical methodologies. In the growing era of precision oncology, clinicians should be adept at navigating these distinctions to optimize testing strategies and leverage insights regarding germline cancer risk surveillance and management for all people with cancer.

Authors

Diana Jaber, Jessica Zhang, Lucy A. Godley

×

Abstract

The immune system must identify genuine threats and avoid reacting to harmless microbes because immune responses, while critical for organismal survival, can cause severe damage and use substantial energy resources. Models for immune response initiation have mostly focused on the direct sensing of microorganisms through pattern recognition receptors. Here, we summarize key features of the leading models of immune response initiation and identify issues they fail to solve individually, including how the immune system distinguishes between pathogens and commensals. We hypothesize and argue that surveillance of disruption to organismal homeostasis and core cellular activities is central to detecting and resolving relevant threats effectively, including infection. We propose that hosts use pattern recognition receptors to identify microorganisms and use sensing of homeostasis disruption to assess the level of threat they pose. We predict that both types of information can be integrated through molecular coincidence detectors (such as inflammasomes or others not yet discovered) and used to determine whether to initiate an immune response, its quality, and its magnitude. This conceptual framework may guide the identification of novel targets and therapeutic strategies to improve the progression and outcome of infection, cancer, autoimmunity, and chronic conditions in which inflammation plays a critical role.

Authors

Katharina Willmann, Luis F. Moita

×

Abstract

A central challenge in cancer therapy is the effective delivery of anticancer treatments while minimizing adverse effects on patient health. The potential dual impact of therapy is clearly illustrated in cancer-associated cachexia, a multifactorial syndrome characterized by involuntary weight loss, systemic inflammation, metabolic dysregulation, and behavioral alterations such as anorexia and apathy. While cachexia research often focuses on tumor-driven mechanisms, the literature indicates that cancer therapies themselves, particularly chemotherapies and targeted treatments, can initiate or exacerbate the biological pathways driving this syndrome. Here, we explore how therapeutic interventions intersect with the pathophysiology of cachexia, focusing on key organ systems including muscle, adipose tissue, liver, heart, and brain. We highlight examples such as therapy-induced upregulation of IL-6 and growth-differentiation factor 15, both contributing to reduced nutrient intake and a negative energy balance via brain-specific mechanisms. At the level of nutrient release and organ atrophy, chemotherapies also converge with cancer progression, for example, activating NF-κB in muscle and PKA/CREB signaling in adipose tissue. By examining how treatment timing and modality align with the natural trajectory of cancer cachexia, we underscore the importance of incorporating physiological endpoints alongside tumor-centric metrics in clinical trials. Such integrative approaches may better capture therapeutic efficacy while preserving patient well-being.

Authors

Tuba Mansoor Thakir, Alice R. Wang, Amanda R. Decker-Farrell, Miriam Ferrer, Rohini N. Guin, Sam Kleeman, Llewelyn Levett, Xiang Zhao, Tobias Janowitz

×
Commentaries
Abstract

Tumor heterogeneity in metastatic prostate cancer (mPC) is well established, but comprehensive characterization using routine sampling remains challenging. Autopsy-based research addresses this obstacle by enabling broad tissue collection within individual patients after treatment. In this issue of the JCI, Roudier et al. analyzed samples from a mPC research autopsy cohort, revealing extensive inter- and intratumor heterogeneity across patients and at the cellular level. The authors associated this variability with genomic, phenotypic, and clinical features and explored the importance of tumors expressing both androgen receptor and neuroendocrine markers. Their findings demonstrate heterogeneity across metastatic sites that may influence treatment response and clinical outcomes, informing future therapeutic strategies in mPC.

Authors

Sylvie S.W. Chan, Osvaldas Vainauskas, Gerhardt Attard

×

Abstract

Cellular susceptibility to HIV is associated with integrin α4β7, a mucosal homing receptor involved with trafficking HIV target cells to sites of HIV replication. However, studies investigating preinfection α4β7 expression as a predictor of HIV outcomes have yielded inconsistent findings, raising questions about the role of α4β7 in HIV acquisition across populations. In this issue of the JCI, Machmach et al. assessed PBMCs collected before HIV infection and found higher α4β7 expression on memory CD4+ T cells and invariant NK T (iNKT) cells in individuals who went on to acquire HIV. Here, we consider possible explanations that may underlie discrepancies among studies and suggest that α4β7 should be considered as part of a multifactorial profile for determining HIV risk. While unlikely to serve as a target for HIV prevention or therapy, α4β7-directed interventions may offer adjunctive benefits in preserving or improving mucosal immunity.

Authors

Tosin E. Omole, Lyle R. McKinnon

×

Abstract

Clinically, potassium supplementation has been shown to lower blood pressure and reduce the risk of stroke through modulation of potassium excretion and sodium reabsorption. Hypokalemia activates the renal sodium chloride cotransporter (NCC) along the distal convoluted tubule (DCT), at least in part, through with-no-lysine 4 (WNK4) kinase and STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) signaling. The DCT also expresses a kinase-deficient, kidney-specific form of WNK1 (KS-WNK1), but its role in NCC activation is unclear. In this issue of the JCI, Boyd-Shiwarski and colleagues found that KS-WNK1 enhanced the effects of potassium on NCC activation in vivo. Specifically, they showed that mice lacking KS-WNK1 did not respond as robustly to dietary challenge. Additionally, in vivo expression of a mutated KS-WNK1 disrupted WNK body, or biomolecular condensate, formation and renal function. These findings, along with those of previous studies, indicate that KS-WNK1 may regulate potassium homeostasis by increasing the kidney’s sensitivity to salt-dependent stress.

Authors

Gerardo Gamba, David H. Ellison

×

Abstract

Kidney stone disease (KSD) arises from a complex interplay of genetic predisposition, diet, metabolic disorders, and other environmental factors. In this issue of the JCI, Lovegrove et al. report a large GWAS that identifies 71 loci associated with an increased risk of KSD. Through an integrative approach combining Mendelian randomization and functional validation, they emphasize the roles of DGKD, SLC34A1, and CYP24A1 in maintaining homeostasis of calcium and phosphate. These findings offer insights into the pathogenesis of KSD and suggest potential targets for intervention. Further studies are needed to validate these findings across diverse populations and clinical settings.

Authors

Shiwei Li, Xuemei Wang, Ming Liu

×

Abstract

Over the last decade, there have been multiple outbreaks of enterovirus D68 (EV-D68) disease and associated cases of acute flaccid myelitis (AFM). The underlying cause of EV-D68–induced AFM is contentious; whether spinal cord motor neurons are damaged by direct viral infection, infiltration of immune cells, or a combination of both is not clear. In this issue of the JCI, Woods Acevedo and coworkers used a neonatal WT mouse model of EV-D68 infection to attribute paralytic disease to immune cell infiltration into the spinal cord. The results of their work in cytokine-knockout or immune cell–depleted animals effectively argue that immunopathogenesis plays an integral role in EV-D68–induced AFM.

Authors

Peter W. Krug

×
Research Letters
Abstract

Authors

Lara Haase, Anouar Belkacemi, Laura Neises, Nicole Kiweler, Christine Wesely, Rosanna Huchzermeier, Maja Bozic, Arefeh Khakdan, Marta Sánchez, Arnaud Mary, Nadja Sachs, Hanna Winter, Enrico Glaab, Michael T. Heneka, Emiel P.C. van der Vorst, Michel Mittelbronn, Johannes Meiser, Jochen G. Schneider

×

Research Articles
Abstract

The neuromuscular junction (NMJ), a synapse between the motor neuron terminal and a skeletal muscle fiber, is crucial throughout life in maintaining the reliable neurotransmission required for functional motricity. Disruption of this system leads to neuromuscular disorders, such as autoimmune myasthenia gravis (MG), the most common form of NMJ disease. MG is caused by autoantibodies directed mostly against the acetylcholine receptor (AChR) or the muscle-specific kinase MuSK. Several studies report immunoreactivity to the Frizzled-like cysteine-rich Wnt-binding domain of MuSK (CRD) in patients, although the pathogenicity of the antibodies involved remains unknown. We showed here that the immunoreactivity to MuSK CRD induced by the passive transfer of anti-MuSKCRD antibodies in mice led to typical MG symptoms, characterized by a loss of body weight and a locomotor deficit. The functional and morphological integrity of the NMJ was compromised with a progressive decay of neurotransmission and disruption of the structure of presynaptic and postsynaptic compartments. We found that anti-MuSKCRD antibodies completely abolished Agrin-mediated AChR clustering by decreasing the Lrp4-MuSK interaction. These results demonstrate the role of the MuSK CRD in MG pathogenesis and improve our understanding of the underlying pathophysiological mechanisms.

Authors

Marius Halliez, Steve Cottin, Axel You, Céline Buon, Antony Grondin, Léa S. Lippens, Mégane Lemaitre, Jérome Ezan, Charlotte Isch, Yann Rufin, Mireille Montcouquiol, Nathalie Sans, Bertrand Fontaine, Julien Messéant, Rozen Le Panse, Laure Strochlic

×

Abstract

White adipose tissue (WAT) fibrosis occurring in obesity contributes to the inflammatory and metabolic comorbidities of insulin resistance and type 2 diabetes, yet the mechanisms involved remain poorly understood. Here, we report a role for the broadly conserved miRNA miR-30a as a regulator of WAT fibrosis and systemic glucose metabolism. Mice modified to express miR-30a at elevated levels in adipose tissues maintain insulin sensitivity coupled with reduced fatty liver disease when fed a high-fat diet. These effects were attributable to cell-autonomous functions of miR-30a that potently increase expression of adipocyte-specific genes. Proteomic screening revealed miR-30a limits profibrotic programs in subcutaneous WAT, at least in part, by repressing PAI-1, a dominant regulator of fibrinolysis and biomarker of insulin resistance. Conversely, mouse adipocytes lacking miR-30a exhibited greater expression of fibrosis markers with disrupted cellular metabolism. Lastly, miR-30a expression negatively correlates with PAI-1 levels in subcutaneous WAT from people with obesity, further supporting an antifibrotic role for miR-30a. Together, these findings uncover miR-30a as a critical regulator of adipose tissue fibrosis that predicts metabolically healthy obesity in people and mice.

Authors

Pradip K. Saha, Robert Sharp, Aaron R. Cox, Rabie Habib, Michael J. Bolt, Jessica B. Felix, Claudia E. Ramirez Bustamante, Xin Li, Sung Yun Jung, Kang Ho Kim, Kai Sun, Huaizhu Wu, Samuel Klein, Sean M. Hartig

×

Abstract

Vasculopathy is a common hallmark of various fibrotic disorders, including systemic sclerosis (SSc), yet its underlying etiology and contribution to fibrogenesis remain ill defined. In SSc, the vasculopathy typically precedes the onset of fibrosis, and we observed that this phenomenon is recapitulated in the Snail transgenic mouse model of SSc. The vascular anomalies manifest as deformed vessels, endothelial cell dysfunction, and vascular leakage. Our investigation into the underlying mechanism of this phenotype revealed that angiopoietin-like protein 2 (ANGPTL2), secreted by the Snail transgenic keratinocytes, is a principal driver of fibrotic vasculopathy. In endothelial cells, ANGPTL2 upregulates profibrotic genes, downregulates various junctional proteins, and prompts the acquisition of mesenchymal characteristics. Inhibiting endothelial cell junctional instability and, consequently, vascular leakage with a synthetic analog of the microbial metabolite Urolithin A (UAS03) effectively mitigated the vasculopathy and inhibited fibrogenesis. Thus, ANGPTL2 is a promising early biomarker of the disease, and inhibiting the vasculopathy-inducing effects of this protein with agents such as UAS03 presents an appealing therapeutic avenue to reduce disease severity. These insights hold the potential to revolutionize the approach to treatment of fibrotic diseases by targeting vascular defects.

Authors

Dyuti Saha, Ravi Kiran Annadorai, Sujaya Thannimangalath, Neha P. Shroff, Sunny Kataria, Binita Dam, Abhik Dutta, Akshay Hegde, Ankita Hiwale, Venkatesh Ravula, Shagnik Saha, Lekshmi Minikumari Rahulan, Neha Nigam, Neha Singh, Vikas Agarwal, Praveen K. Vemula, Colin Jamora

×

Abstract

Pancreatic islet microvasculature is essential for optimal islet function and glucose homeostasis. However, islet vessel pathogenesis in obesity and its role in the manifestation of metabolic disorders remain understudied. Here, we depict the time-resolved decline of intra-islet endothelial cell responsiveness to VEGF-A and islet vessel function in a mouse model of diet-induced obesity. Longitudinal imaging of sentinel islets transplanted into mouse eyes revealed substantial vascular remodeling and diminished VEGF-A response in islet endothelial cells after 12 weeks of Western diet (WD) feeding. This led to islet vessel barrier dysfunction and hemodynamic dysregulation, delaying transportation of secreted insulin into the blood. Notably, islet vessels exhibited a metabolic memory of previous WD feeding. Neither VEGF-A sensitivity nor the other vascular alterations was fully restored by control diet refeeding, resulting in modest yet significant impairment in glucose clearance despite normalized insulin sensitivity. Mechanistic analysis implicated hyperactivation of atypical PKC under both WD and recovery conditions, which inhibited VEGFR2 internalization and blunted VEGF-A–triggered signal transduction in endothelial cells. In summary, prolonged WD feeding causes irreversible islet endothelial cell desensitization to VEGF-A and islet vessel dysfunction, directly undermining glucose homeostasis.

Authors

Yan Xiong, Andrea Dicker, Montse Visa, Erwin Ilegems, Per-Olof Berggren

×

Abstract

Type 1 diabetes is characterized by the autoimmune destruction of pancreatic β cells, resulting in permanent loss of glucose homeostasis. Islet transplantation is a promising potential cure that remains hindered by immune rejection. We previously showed that ST8Sia6 expression on tumors reduced immune surveillance and hypothesized that this sialyltransferase could protect β cells from autoimmune destruction. Here, we demonstrate that ectopic expression of ST8Sia6 in β cells of female nonobese diabetic mice (NOD βST) decreased the spontaneous incidence of diabetes by 90% and preserved β cell mass. NOD βST mice had comparable insulitis at 8 weeks of age that did not progress over time compared with littermate controls. β Cell–autoreactive B and T cells were present in NOD βST mice, indicating a peripheral rather than central mechanism of immune tolerance. The islets of NOD βST mice displayed a dampened type 1 immune response and reduced IL-12p35 expression in dendritic cells compared with those of littermate controls. The peripheral protection persisted even after removal of ST8Sia6 expression at 20 weeks of age, indicating that transient expression was sufficient for establishment of tolerance. These results demonstrate that ST8Sia6 protects β cells from immune-mediated attack and rejection, highlighting its therapeutic potential for autoimmune disorders.

Authors

Justin Choe, Paul Belmonte, Sydney Crotts, Thanh Nguyen, David Friedman, Alexi Zastrow, Matthew Rajcula, Brady Hammer, Claire Wilhelm, Michael J. Shapiro, Aleksey Matveyenko, Virginia Smith Shapiro

×

Abstract

Platelets play a dual role in hemostasis and inflammation-associated thrombosis and hemorrhage. Although the mechanisms linking inflammation to platelet dysfunction remain poorly understood, our previous work demonstrated that TNF-α alters mitochondrial mass, platelet activation, and autophagy-related pathways in megakaryocytes. Here, we hypothesized that TNF-α impairs platelet function by disrupting autophagy, a process critical for mitochondrial health and cellular metabolism. Using human and murine models of TNF-α–driven diseases, including myeloproliferative neoplasms and rheumatoid arthritis, we found that TNF-α downregulates syntaxin 17 (STX17), a key mediator of autophagosome-lysosome fusion. This disruption inhibited autophagy, leading to the accumulation of dysfunctional mitochondria and reduced mitochondrial respiration. These metabolic alterations compromised platelet-driven clot contraction, a process linked to thrombotic and hemorrhagic complications. Our findings reveal a mechanism by which TNF-α disrupts hemostasis through autophagy inhibition, highlighting TNF-α as a critical regulator of platelet metabolism and function. This study provides potentially new insights into inflammation-associated pathologies and suggests autophagy-targeting strategies as potential therapeutic avenues to restore hemostatic balance.

Authors

Guadalupe Rojas-Sanchez, Jorge Calzada-Martinez, Brandon McMahon, Aaron C. Petrey, Gabriela Dveksler, Gerardo P. Espino-Solis, Orlando Esparza, Giovanny Hernandez, Dennis Le, Eric P. Wartchow, Ken Jones, Lucas H. Ting, Catherine Jankowski, Marguerite R. Kelher, Marilyn Manco-Johnson, Marie L. Feser, Kevin D. Deane, Travis Nemkov, Angelo D’Alessandro, Andrew Thorburn, Paola Maycotte, José A. López, Pavel Davizon-Castillo

×

Abstract

Psoriatic arthritis (PsA) is a multifaceted, chronic inflammatory disease affecting the skin, joints, and entheses, and it is a major comorbidity of psoriasis. Most patients with PsA present with psoriasis before articular involvement; however, the molecular and cellular mechanisms underlying the link between cutaneous psoriasis and PsA are poorly understood. Here, we found that epidermis-specific SPRY1-deficient mice spontaneously developed PsA-like inflammation involving both the skin and joints. Excessive CXCL10 was secreted by SPRY1-deficient epidermal keratinocytes through enhanced activation of JAK1/2/STAT1 signaling, and CXCL10 blockade attenuated PsA-like inflammation. Of note, CXCL10 was found to bind to CD14, but not CXCR3, to promote the TNF-α production of periarticular CD14hi macrophages via PI3K/AKT and NF-κB signaling pathways. Collectively, this study reveals that SPRY1 deficiency in the epidermis is sufficient to drive both skin and joint inflammation, and it identifies keratinocyte-derived CXCL10 and periarticular CD14hi macrophages as critical links in the skin-joint crosstalk leading to PsA. This keratinocyte SPRY1/CXCL10/periarticular CD14hi macrophage/TNF-α axis provides valuable insights into the mechanisms underlying the transition from psoriasis to PsA and suggests potential therapeutic targets for preventing this progression.

Authors

Fan Xu, Ying-Zhe Cui, Xing-Yu Yang, Yu-Xin Zheng, Xi-Bei Chen, Hao Zhou, Zhao-Yuan Wang, Yuan Zhou, Yi Lu, Ying-Ying Li, Li-Ran Ye, Ni-Chang Fu, Si-Qi Chen, Xue-Yan Chen, Min Zheng, Yong Yang, Xiao-Yong Man

×

Abstract

Metastatic prostate cancer (mPC) is a clinically and molecularly heterogeneous disease. While there is increasing recognition of diverse tumor phenotypes across patients, less is known about the molecular and phenotypic heterogeneity present within an individual. In this study, we aimed to define the patterns, extent, and consequences of inter- and intratumoral heterogeneity in lethal prostate cancer. By combining and integrating in situ tissue-based and sequencing approaches, we analyzed over 630 tumor samples from 52 patients with mPC. Our efforts revealed phenotypic heterogeneity at the patient, metastasis, and cellular levels. We observed that intrapatient intertumoral molecular subtype heterogeneity was common in mPC and showed associations with genomic and clinical features. Additionally, cellular proliferation rates varied within a given patient across molecular subtypes and anatomic sites. Single-cell sequencing studies revealed features of morphologically and molecularly divergent tumor cell populations within a single metastatic site. These data provide a deeper insight into the complex patterns of tumoral heterogeneity in mPC with implications for clinical management and the future development of diagnostic and therapeutic approaches.

Authors

Martine P. Roudier, Roman Gulati, Erolcan Sayar, Radhika A. Patel, Micah Tratt, Helen M. Richards, Paloma Cejas, Miguel Munoz Gomez, Xintao Qiu, Yingtian Xie, Brian Hanratty, Samir Zaidi, Jimmy L. Zhao, Mohamed Adil, Chitvan Mittal, Yibai Zhao, Ruth Dumpit, Ilsa Coleman, Jin-Yih Low, Thomas Persse, Patricia Galipeau, John K. Lee, Maria Tretiakova, Meagan Chambers, Funda Vakar-Lopez, Lawrence D. True, Marie Perrone, Hung-Ming Lam, Lori A. Kollath, Chien-Kuang Cornelia Ding, Stephanie Harmon, Heather H. Cheng, Evan Y. Yu, Robert B. Montgomery, Jessica E. Hawley, Daniel W. Lin, Eva Corey, Michael T. Schweizer, Manu Setty, Gavin Ha, Charles L. Sawyers, Colm Morrissey, Henry Long, Peter S. Nelson, Michael C. Haffner

×

Abstract

BACKGROUND Kidney stone disease (KSD) affects approximately 10% of adults, is heritable, and is associated with mineral metabolic abnormalities.METHODS Genetic variants and pathways increasing KSD risk via calcium and phosphate homeostasis were ascertained using GWAS, region-specific Mendelian randomization (MR), and genetic colocalization. The utility of pathway modulation was estimated via drug target MR, and the effects of variants on calcium-sensing receptor (CaSR) signaling were characterized.RESULTS Seventy-nine independent KSD-associated genetic signals at 71 loci were identified. MR identified 3 loci affecting KSD risk via increased serum calcium or decreased serum phosphate concentrations (ORs for genomic regions = 4.30, 11.42, and 13.83 per 1 SD alteration; P < 5.6 × 10–10). Colocalization analyses defined putative, noncoding KSD-causing variants estimated to account for 11%–19% of KSD cases in proximity to diacylglycerol kinase δ (DGKD), a CaSR signaling partner; solute carrier family 34 member 1 (SLC34A1), a renal sodium-phosphate transporter; and cytochrome P450 family 24 subfamily A member 1 (CYP24A1), which degrades 1,25-dihydroxyvitamin D. Drug target MR indicated that reducing serum calcium by 0.08 mmol/L via CASR, DGKD, or CYP24A1, or increasing serum phosphate by 0.16 mmol/L via SLC34A1 may reduce KSD relative risk by up to 90%. Furthermore, reduced DGKδ expression and KSD-associated DGKD missense variants impaired CaSR signal transduction in vitro, which was ameliorated by cinacalcet, a positive CaSR allosteric modulator.CONCLUSION DGKD-, SLC34A1-, and CYP24A1-associated variants linked to reduced CaSR signal transduction, increased urinary phosphate excretion, and impaired 1,25-dihydroxyvitamin D inactivation, respectively, are common causes of KSD. Genotyping patients with KSD may facilitate personalized KSD risk stratification and targeted pharmacomodulation of associated pathways to prevent KSD.FUNDING Oxfordshire Health Services Research Committee (OHSRC, part of Oxford Hospitals Charity); Kidney Research UK (RP_030_20180306); The Urology Foundation; National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (NF-SI-0514–10091); Wellcome Trust (204826/z/16/z and 106995/z/15/z); Medical Research Council (MRC) Clinical Research Training Fellowships (MR/W03168X/1 and MR/S021329/1); Wellcome Trust Clinical Career Development Fellowship; Sir Henry Dale Fellowship, with joint funding by the Wellcome Trust and the Royal Society (224155/Z/21/Z); St. Peter’s Trust for Kidney Bladder and Prostate Research.

Authors

Catherine E. Lovegrove, Michelle Goldsworthy, Jeremy Haley, Diane Smelser, Caroline Gorvin, Fadil M. Hannan, Anubha Mahajan, Mohnish Suri, Omid Sadeghi-Alavijeh, Shabbir H. Moochhala, Daniel P. Gale, David Carey, Michael V. Holmes, Dominic Furniss, Rajesh V. Thakker, Sarah A. Howles

×

Abstract

We leveraged specimens from the RV217 prospective study that enrolled participants at high risk of HIV-1 acquisition to investigate how NK cells, conventional T cells, and unconventional T cells influence HIV-1 acquisition. We observed low levels of α4β7 expression on memory CD4+ T cells and invariant NK T (iNKT) cells, 2 cell types highly susceptible to HIV-1 infection, in highly exposed seronegative (HESN) compared with highly exposed seroconverter (HESC) participants. NK cells from HESN individuals had higher levels of α4β7 than did those from HESC individuals, presented a quiescent phenotype, and had a higher capacity to respond to opsonized target cells. We also measured translocated microbial products in plasma and found differences in phylum distribution between HESN and HESC participants that were associated with the immune phenotypes affecting the risk of HIV-1 acquisition. Finally, a logistic regression model combining features of NK cell activation, α4β7 expression on memory CD4+ T cells, and T-box expressed in T cells (Tbet) expression by iNKT cells achieved the highest accuracy in identifying HESN and HESC participants. This immune signature, consisting of increased α4β7 on cells susceptible to HIV infection combined with higher NK cell activation and lower gut-homing potential, could affect the efficacy of HIV-1 prevention strategies such as vaccines.

Authors

Kawthar Machmach, Kombo F. N’guessan, Rohit Farmer, Sucheta Godbole, Dohoon Kim, Lauren McCormick, Noemia S. Lima, Amy R. Henry, Farida Laboune, Isabella Swafford, Sydney K. Mika, Bonnie M. Slike, Jeffrey R. Currier, Leigh Anne Eller, Julie A. Ake, Sandhya Vasan, Merlin L. Robb, Shelly J. Krebs, Daniel C. Douek, Dominic Paquin-Proulx, for the RV217 Study Group

×

Abstract

Enterovirus D68 (EV-D68) is associated with acute flaccid myelitis (AFM), a poliomyelitis-like illness causing paralysis in young children. However, the mechanisms of paralysis are unclear, and antiviral therapies are lacking. To better understand EV-D68 disease, we inoculated newborn mice intracranially to assess viral tropism, virulence, and immune responses. WT mice inoculated intracranially with a neurovirulent strain of EV-D68 showed infection of spinal cord neurons and developed paralysis. Spinal tissue from infected mice revealed increased levels of chemokines, inflammatory monocytes, macrophages, and T cells relative to those in controls, suggesting that immune cell infiltration influences pathogenesis. To define the contribution of cytokine-mediated immune cell recruitment to disease, we inoculated mice lacking CCR2, a receptor for several EV-D68–upregulated cytokines, or RAG1, which is required for lymphocyte maturation. WT, Ccr2–/–, and Rag1–/– mice had comparable viral titers in spinal tissue. However, Ccr2–/– and Rag1–/– mice were significantly less likely to be paralyzed relative to WT mice. Consistent with impaired T cell recruitment to sites of infection in Ccr2–/– and Rag1–/– mice, antibody-mediated depletion of CD4+ or CD8+ T cells from WT mice diminished paralysis. These results indicate that immune cell recruitment to the spinal cord promotes EV-D68–associated paralysis and illuminate potential new targets for therapeutic intervention.

Authors

Mikal A. Woods Acevedo, Lan, Sarah Maya, Jennifer E. Jones, Isabella E. Bosco, John V. Williams, Megan Culler Freeman, Terence S. Dermody

×

Abstract

To maintain potassium homeostasis, the kidney’s distal convoluted tubule (DCT) evolved to convert small changes in blood [K+] into robust effects on salt reabsorption. This process requires NaCl cotransporter (NCC) activation by the with-no-lysine (WNK) kinases. During hypokalemia, the kidney-specific WNK1 isoform (KS-WNK1) scaffolds the DCT-expressed WNK signaling pathway within biomolecular condensates of unknown function termed WNK bodies. Here, we show that KS-WNK1 amplified kidney tubule reactivity to blood [K+], in part via WNK bodies. In genetically modified mice, targeted condensate disruption trapped the WNK pathway, causing renal salt wasting that was more pronounced in females. In humans, WNK bodies accumulated as plasma potassium fell below 4.0 mmol/L, suggesting that the human DCT experiences the stress of potassium deficiency, even when [K+] is in the low-to-normal range. These data identify WNK bodies as kinase signal amplifiers that mediate tubular [K+] responsiveness, nephron sexual dimorphism, and BP salt sensitivity. Our results illustrate how biomolecular condensate specialization can optimize a mammalian physiologic stress response that impacts human health.

Authors

Cary R. Boyd-Shiwarski, Rebecca T. Beacham, Jared A. Lashway, Katherine E. Querry, Shawn E. Griffiths, Daniel J. Shiwarski, Sophia A. Knoell, Nga H. Nguyen, Lubika J. Nkashama, Melissa N. Valladares, Anagha Bandaru, Allison L. Marciszyn, Jonathan Franks, Mara Sullivan, Simon C. Watkins, Aylin R. Rodan, Chou-Long Huang, Sean D. Stocker, Ossama B. Kashlan, Arohan R. Subramanya

×

Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease characterized by impaired fibroblast clearance and excessive extracellular matrix (ECM) protein production. Wilms tumor 1 (WT1), a transcription factor, is selectively upregulated in IPF fibroblasts. However, the mechanisms by which WT1 contributes to fibroblast accumulation and ECM production remain unknown. Here, we investigated the heterogeneity of WT1-expressing mesenchymal cells using single-nucleus RNA-Seq of distal lung tissues from patients with IPF and control donors. WT1 was selectively upregulated in a subset of IPF fibroblasts that coexpressed several prosurvival and ECM genes. The results of both loss-of-function and gain-of-function studies were consistent with a role for WT1 as a positive regulator of prosurvival genes to impair apoptotic clearance and promote ECM production. Fibroblast-specific overexpression of WT1 augmented fibroproliferation, myofibroblast accumulation, and ECM production during bleomycin-induced pulmonary fibrosis in young and aged mice. Together, these findings suggest that targeting WT1 is a promising strategy for attenuating fibroblast expansion and ECM production during fibrogenesis.

Authors

Harshavardhana H. Ediga, Chanukya P. Vemulapalli, Vishwaraj Sontake, Pradeep K. Patel, Hikaru Miyazaki, Dimitry Popov, Martin B. Jensen, Anil G. Jegga, Steven K. Huang, Christoph Englert, Andreas Schedl, Nishant Gupta, Francis X. McCormack, Satish K. Madala

×

Abstract

Gene replacement therapies mediated by adeno-associated viral (AAV) vectors represent a promising approach for treating genetic diseases. However, their modest packaging capacity (~4.7 kb) remains an important constraint and significantly limits their application for genetic disorders involving large genes. A prominent example is Duchenne muscular dystrophy (DMD), whose protein product dystrophin is generated from a 11.2 kb segment of the DMD mRNA. Here, we explored methods that enable efficient expression of full-length dystrophin via triple AAV codelivery. This method exploits the protein trans-splicing mechanism mediated by split inteins. We identified a combination of efficient and specific split intein pairs that enabled the reconstitution of full-length dystrophin from 3 dystrophin fragments. We show that systemic delivery of low doses of the myotropic AAVMYO1 in mdx4cv mice led to efficient expression of full-length dystrophin in the hind limb, diaphragm, and heart muscles. Notably, muscle morphology and physiology were significantly improved in triple-AAV–treated mdx4cv mice versus saline-treated controls. This method shows the feasibility of expressing large proteins from several fragments that were delivered using low doses of myotropic AAV vectors. It can be adapted to other large genes involved in disorders for which gene replacement remains challenged by the modest AAV cargo capacity.

Authors

Hichem Tasfaout, Timothy S. McMillen, Theodore R. Reyes, Christine L. Halbert, Rong Tian, Michael Regnier, Jeffrey S. Chamberlain

×

Abstract

CAR-T cells are a powerful yet expensive tool in cancer immunotherapy. Although their use in targeting hematological malignancies is well established, using a single CAR-T cell therapy to treat both hematological and solid tumors, which can reduce cost, remains largely unexplored. In this study, we identified CD155, an adhesion molecule that is upregulated during tumor progression, as a target for CAR-T cell therapy in both leukemia and solid tumors. We engineered CAR-T cells using human and mouse anti–CD155 antibodies generated from a Berkeley Lights’ Beacon platform. These CAR-T cells demonstrated potent antitumor activity, significantly reducing tumor burden in preclinical models of acute myeloid leukemia, non–small cell lung cancer, and pancreatic cancer. To reduce potential allogeneic rejection, we generated CAR-T cells using humanized anti–CD155 antibody sequences that retained efficacy. Additionally, murine CAR-T cells targeting mouse CD155 exhibited limited toxic side effects in immunocompetent mice, highlighting the favorable safety profile of this therapy. These findings suggest that CD155 can be targeted by CD155 CAR-T cells safely and effectively, representing an innovative cellular therapeutic strategy that has the potential to expand its scope across both AML and multiple solid tumors, thereby lowering the cost of cellular immunotherapy, especially as allogenic, universal, and off-the-shelf CAR-T cell therapies advance to the clinic.

Authors

Tianchen Xiong, Ge Wang, Peng Yu, Zhenlong Li, Debao Li, Jianying Zhang, Song Lu, Ruiqi Yang, Xiaolong Lian, Jianhong Mi, Rui Ma, Zhiyao Li, Guido Marcucci, Tingting Zhao, Michael A. Caligiuri, Jianhua Yu

×

Abstract

Gasdermin (GSDM) family proteins mediate tumor pyroptosis and impact cancer progression, but other than that, their involvement in the tumor immune microenvironment remains largely unknown. Here, we show that activation of GSDMD in human tumor specimens mainly occurs in tumor-infiltrating leukocytes. Significantly, GSDMD deficiency or its inactivation in CD4+ T cells disabled CD8+ T cell–mediated antitumor immunity and caused tumor outgrowth in mice. Further study uncovered that, via inducing IL-2 production, GSDMD was required for CD4+ T cells to provide help to CD8+ T cell function. Mechanistically, GSDMD was cleaved by TCR stimulation–activated caspase-8 to form GSDMD-N pores, which enhanced Ca2+ influx for IL-2 induction. Moreover, GSDMD activation and function were conserved in human CD4+ T cells and associated with favorable prognosis and improved response to anti–PD-1 immunotherapy in colonic and pancreatic cancer. We believe this study identifies a new nonpyroptotic role of GSDMD in tumor immunity, proposing GSDMD as a potential target for cancer immunotherapy.

Authors

Yihan Yao, Lingling Wang, Weiqin Jiang, Ning Wang, Mengjie Li, Wenlong Lin, Ting Zhang, Wanqiang Sheng, Xiaojian Wang

×

Abstract

The comorbidity of depressive symptoms in chronic pain has been recognized as a key health issue. However, whether discrete circuits underlie behavioral subsets of chronic pain and comorbid depression has not been addressed. Here, we report that dopamine 2 (D2) receptor–expressing medium spiny neurons in the nucleus accumbens medial shell (mNAcSh) mediate pain hypersensitivity and depression-like behaviors in mice after nerve injury. Two separate neural pathways mediate different symptoms. The glutamatergic inputs from the anteromedial thalamic nucleus to mNAcSh D2 neurons that innervated orexin-expressing neurons in the lateral hypothalamic area contributed to pain regulation. In contrast, the lateral septum GABAergic inputs to mNAcSh D2 neurons that disinhibit the ventral pallidum glutamatergic neurons mediated depression-like behaviors. These findings indicate the functional significance of heterogeneous mNAcSh D2 neurons and their neural pathways, providing a perspective for symptom-specific treatments of chronic pain and comorbid depression.

Authors

Di Liu, Fang-Xia Xu, Zhuang Yu, Xiao-Jing Huang, Ya-Bing Zhu, Li-Juan Wang, Chen-Wei Wu, Xu Zhang, Jun-Li Cao, Jinbao Li

×
Corrigenda
Abstract

Authors

Raman Devarajan, Valerio Izzi, Hellevi Peltoketo, Gunilla Rask, Saila Kauppila, Marja-Riitta Väisänen, Heli Ruotsalainen, Guillermo Martínez-Nieto, Sanna-Maria Karppinen, Timo Väisänen, Inderjeet Kaur, Jussi Koivunen, Takako Sasaki, Robert Winqvist, Aki Manninen, Fredrik Wärnberg, Malin Sund, Taina Pihlajaniemi, Ritva Heljasvaara

×

Abstract

Authors

Seth J. Zost, Jinhui Dong, Iuliia M. Gilchuk, Pavlo Gilchuk, Natalie J. Thornburg, Sandhya Bangaru, Nurgun Kose, Jessica A. Finn, Robin Bombardi, Cinque Soto, Elaine C. Chen, Rachel S. Nargi, Rachel E. Sutton, Ryan P. Irving, Naveenchandra Suryadevara, Jonna B. Westover, Robert H. Carnahan, Hannah L. Turner, Sheng Li, Andrew B. Ward, James E. Crowe Jr.

×


Abstract

Authors

Yinghui Zhu, Mariam Murtadha, Miaomiao Liu, Enrico Caserta, Ottavio Napolitano, Le Xuan Truong Nguyen, Huafeng Wang, Milad Moloudizargari, Lokesh Nigam, Theophilus Tandoh, Xuemei Wang, Alex Pozhitkov, Rui Su, Xiangjie Lin, Marc Denisse Estepa, Raju Pillai, Joo Song, James F. Sanchez, Yu-Hsuan Fu, Lianjun Zhang, Man Li, Bin Zhang, Ling Li, Ya-Huei Kuo, Steven Rosen, Guido Marcucci, John C. Williams, Flavia Pichiorri

×

In-Press Preview - More

Abstract

Mutant KRAS has been implicated in driving a quarter of all cancer types. Although inhibition of the KRASG12C mutant protein has shown clinical promise, there is still a need for therapies that overcome resistance and target non-KRASG12C mutations. KRAS activates downstream MYC, which is also a challenging-to-drug oncoprotein. We have developed an “inverted” RNAi molecule with the passenger strand of a MYC-targeting siRNA fused to the guide strand of a KRAS-targeting siRNA. The chimeric molecule simultaneously inhibits KRAS and MYC, showing marked improvements in efficacy beyond the individual siRNA components. This effect is mediated by 5’-dT overhangs following endosomal metabolism. The synergistic RNAi activity led to a >10-40-fold improvement in inhibiting cancer viability in vitro. When conjugated to an epidermal growth factor receptor (EGFR)-targeting ligand, the chimeric siRNA was delivered to and internalized by tumor cells. As compared with individual targeting siRNAs, the chimeric design resulted in considerably improved metabolic stability in tumors, enhanced silencing of both oncogenes, and reduced tumor progression in multiple cancer models. This inverted chimeric design establishes proof-of-concept for ligand-directed, dual-silencing of KRAS and MYC in cancer and constitutes an innovative molecular strategy for co-targeting any two genes of interest, which has broad implications.

Authors

Yogitha S Chareddy, Hayden P. Huggins, Snehasudha S Sahoo, Lyla Stanland, Christina Gutierrez-Ford, Kristina M. Whately, Lincy Edatt, Salma H Azam, Matthew C. Fleming, Jonah Im, Alessandro Porrello, Imani Simmons, Jillian L. Perry, Albert A. Bowers, Martin Egli, Chad V. Pecot

×

Abstract

Selective and controlled expansion of endogenous β-cells has been pursued as a potential therapy for diabetes. Ideally, such therapies would preserve feedback control of β-cell proliferation to avoid excessive β-cell expansion. Here, we identified a regulator of β-cell proliferation whose inactivation results in controlled β-cell expansion: the protein deacetylase Sirtuin 2 (SIRT2). Sirt2 deletion in β-cells of mice increased β-cell proliferation during hyperglycemia with little effect in homeostatic conditions, indicating preservation of feedback control of β-cell mass. SIRT2 restrains proliferation of human islet β-cells, demonstrating conserved SIRT2 function. Analysis of acetylated proteins in islets treated with a SIRT2 inhibitor revealed that SIRT2 deacetylates enzymes involved in oxidative phosphorylation, dampening the adaptive increase in oxygen consumption during hyperglycemia. At the transcriptomic level, Sirt2 inactivation has context-dependent effects on β-cells, with Sirt2 controlling how β-cells interpret hyperglycemia as a stress. Finally, we provide proof-of-principle that systemic administration of a GLP1-coupled Sirt2-targeting antisense oligonucleotide achieves β-cell Sirt2 inactivation and stimulates β-cell proliferation during hyperglycemia. Overall, these studies identify a therapeutic strategy for increasing β-cell mass in diabetes without circumventing feedback control of β-cell proliferation. Future work should test the extent that these findings translate to human β-cells from individuals with and without diabetes.

Authors

Matthew Wortham, Bastian Ramms, Chun Zeng, Jacqueline R. Benthuysen, Somesh Sai, Dennis P. Pollow, Fenfen Liu, Michael Schlichting, Austin R. Harrington, Bradley Liu, Thazha P. Prakash, Elaine C. Pirie, Han Zhu, Siyouneh Baghdasarian, Sean T. Lee, Victor A. Ruthig, Kristen L. Wells, Johan Auwerx, Orian S. Shirihai, Maike Sander

×

Abstract

Authors

Alyssa M. Duffy, Anshika Goenka, Maryam I. Azeem, Azmain Taz, Sayalee V. Potdar, Sara A. Scott, Ellen Marin, Jonathan L. Kaufman, Craig C. Hofmeister, Nisha S. Joseph, Vikas A. Gupta, Sagar Lonial, Ajay K. Nooka, Madhav V. Dhodapkar, Kavita M. Dhodapkar

×

Abstract

Despite the clinical success of targeted inhibitors in cutaneous melanoma, therapeutic responses are transient and influenced by the aged tumor microenvironment, and drug-tolerant residual cells seed resistance. Given the similarities between drug tolerance and cellular dormancy, we studied the dormancy marker, nuclear receptor subfamily 2 group F member 1 (NR2F1), in response to targeted therapy. We utilized BRAF-V600E inhibitors (BRAFi) plus MEK inhibitors (MEKi) in BRAF-mutant melanoma models since melanoma patients treated with this combination display minimal residual disease, but ultimately tumors relapse. Transcriptomic analysis of melanoma samples from patients treated up to 20 days with BRAFi + MEKi showed increased expression of NR2F1. Similarly, NR2F1 was highly expressed in the drug-tolerant invasive cell state of minimal residual disease in patient-derived and mouse-derived xenograft tumors on BRAFi + MEKi treatment. Overexpression of NR2F1 alone was sufficient to reduce BRAFi + MEKi effects on tumor growth in vivo as well as on cell proliferation, death, and invasion in vitro. NR2F1-overexpressing cells were enriched for hallmarks gene sets for mTORC1 signaling, and NR2F1 bound to the promoter regions of genes involved in mTORC1 signaling. These cells were sensitive to the combination of BRAFi, MEKi plus rapamycin in vitro and in vivo. Melanomas from aged mice, which are known to exhibit a decreased response to BRAFi + MEKi, displayed higher levels of NR2F1 compared to tumors from young mice. Depleting NR2F1 levels in an aged mouse melanoma model improved the response to targeted therapy. These findings show high NR2F1 expression in ‘invasive-state’ residual cells and that targeting NR2F1-high cells with mTORC1 inhibitors could improve outcomes in melanoma patients.

Authors

Manoela Tiago, Timothy J. Purwin, Casey D. Stefanski, Renaira Silva, Mitchell E. Fane, Yash Chhabra, Jelan I. Haj, Jessica L.F. Teh, Rama Kadamb, Weijia Cai, Sheera R. Rosenbaum, Vivian Chua, Nir Hacohen, Michael A. Davies, Jessie Villanueva, Inna Chervoneva, Ashani T. Weeraratna, Dan A. Erkes, Claudia Capparelli, Julio A. Aguirre-Ghiso, Andrew E. Aplin

×

Abstract

The fetal liver is the primary site of hematopoietic stem cell (HSC) generation during embryonic development. However, the molecular mechanisms governing the transition of hematopoiesis from the fetal liver to the bone marrow (BM) remain incompletely understood. Here, we identify the mammalian Polycomb group (PcG) protein Yin Yang 1 (YY1) as a key regulator of this developmental transition. Conditional deletion of Yy1 in the hematopoietic system during fetal development results in neonatal lethality and depletion of the fetal HSC pool. YY1-deficient fetal HSCs exhibit impaired migration and fail to engraft in the adult BM, thereby losing their ability to reconstitute hematopoiesis. Transcriptomic analysis reveals that Yy1 knockout disrupts genetic networks controlling cell motility and adhesion in fetal hematopoietic stem and progenitor cells (HSPCs). Notably, YY1 does not directly bind the promoters of most dysregulated genes. Instead, it modulates chromatin accessibility at regulatory loci, orchestrating broader epigenetic programs essential for HSPC migration and adhesion. Together, these findings establish YY1 as a critical epigenetic regulator of fetal HSC function and provide a mechanistic framework to further decipher how temporal epigenomic configurations determine HSC fetal-to-adult transition during development.

Authors

Sahitya Saka, Zhanping Lu, Yinghua Wang, Peng Liu, Deependra K. Singh, Junki P. Lee, Carmen G. Palii, Tyler R. Alvarez, Anna L. F. V. Assumpção, Xiaona You, Jing Zhang, Marjorie Brand, Michael L. Atchison, Xuan Pan

×

Advertisement

Review Series - More

Pancreatic Cancer

Series edited by Ben Z. Stanger

Pancreatic ductal adenocarcinoma (PDAC) has among the poorest prognosis and highest refractory rates of all tumor types. The reviews in this series, by Dr. Ben Z. Stanger, bring together experts across multiple disciplines to explore what makes PDAC and other pancreatic cancers so distinctively challenging and provide an update on recent multipronged approaches aimed at improving early diagnosis and treatment.

×