Desai et al. report that the tumor microenvironment of lung cancers from people with HIV exhibits a more immunoregulatory environment compared with that in people without HIV. The cover image shows HIV-positive non-small cell lung cancer with immune cell infiltration, stained by imaging mass cytometry.
Despite the clinical success of targeted inhibitors in cutaneous melanoma, therapeutic responses are transient and influenced by the aged tumor microenvironment, and drug-tolerant residual cells seed resistance. Given the similarities between drug tolerance and cellular dormancy, we studied the dormancy marker, nuclear receptor subfamily 2 group F member 1 (NR2F1), in response to targeted therapy. We utilized BRAF-V600E inhibitors (BRAFi) plus MEK inhibitors (MEKi) in BRAF-mutant melanoma models since melanoma patients treated with this combination display minimal residual disease, but ultimately tumors relapse. Transcriptomic analysis of melanoma samples from patients treated up to 20 days with BRAFi + MEKi showed increased expression of NR2F1. Similarly, NR2F1 was highly expressed in the drug-tolerant invasive cell state of minimal residual disease in patient-derived and mouse-derived xenograft tumors on BRAFi + MEKi treatment. Overexpression of NR2F1 alone was sufficient to reduce BRAFi + MEKi effects on tumor growth in vivo as well as on cell proliferation, death, and invasion in vitro. NR2F1-overexpressing cells were enriched for hallmarks gene sets for mTORC1 signaling, and NR2F1 bound to the promoter regions of genes involved in mTORC1 signaling. These cells were sensitive to the combination of BRAFi, MEKi plus rapamycin in vitro and in vivo. Melanomas from aged mice, which are known to exhibit a decreased response to BRAFi + MEKi, displayed higher levels of NR2F1 compared to tumors from young mice. Depleting NR2F1 levels in an aged mouse melanoma model improved the response to targeted therapy. These findings show high NR2F1 expression in ‘invasive-state’ residual cells and that targeting NR2F1-high cells with mTORC1 inhibitors could improve outcomes in melanoma patients.
Manoela Tiago, Timothy J. Purwin, Casey D. Stefanski, Renaira Silva, Mitchell E. Fane, Yash Chhabra, Jelan I. Haj, Jessica L.F. Teh, Rama Kadamb, Weijia Cai, Sheera R. Rosenbaum, Vivian Chua, Nir Hacohen, Michael A. Davies, Jessie Villanueva, Inna Chervoneva, Ashani T. Weeraratna, Dan A. Erkes, Claudia Capparelli, Julio A. Aguirre-Ghiso, Andrew E. Aplin
The fetal liver is the primary site of hematopoietic stem cell (HSC) generation during embryonic development. However, the molecular mechanisms governing the transition of hematopoiesis from the fetal liver to the bone marrow (BM) remain incompletely understood. Here, we identify the mammalian Polycomb group (PcG) protein Yin Yang 1 (YY1) as a key regulator of this developmental transition. Conditional deletion of Yy1 in the hematopoietic system during fetal development results in neonatal lethality and depletion of the fetal HSC pool. YY1-deficient fetal HSCs exhibit impaired migration and fail to engraft in the adult BM, thereby losing their ability to reconstitute hematopoiesis. Transcriptomic analysis reveals that Yy1 knockout disrupts genetic networks controlling cell motility and adhesion in fetal hematopoietic stem and progenitor cells (HSPCs). Notably, YY1 does not directly bind the promoters of most dysregulated genes. Instead, it modulates chromatin accessibility at regulatory loci, orchestrating broader epigenetic programs essential for HSPC migration and adhesion. Together, these findings establish YY1 as a critical epigenetic regulator of fetal HSC function and provide a mechanistic framework to further decipher how temporal epigenomic configurations determine HSC fetal-to-adult transition during development.
Sahitya Saka, Zhanping Lu, Yinghua Wang, Peng Liu, Deependra K. Singh, Junki P. Lee, Carmen G. Palii, Tyler R. Alvarez, Anna L. F. V. Assumpção, Xiaona You, Jing Zhang, Marjorie Brand, Michael L. Atchison, Xuan Pan
Elena Godoy-Molina, Natalia L. Serrano, Aquilina Jiménez-González, Miquel Villaronga, Rosa M. Marqués Pérez-Bryan, Rubén Varela-Fernández, Stephanie Lotz-Esquivel, Alba Hevia Tuñón, Prachi P. Trivedi, Nina Horn, Joseph F. Standing, Víctor Mangas-Sanjuan, Mercè Capdevila, Aurora Mateos, Denis Broun, Svetlana Lutsenko, Ines Medina-Rivera, Rafael Artuch, Cristina Jou, Mònica Roldán, Pedro Arango-Sancho, Mónica Saez-Villafañe, Juan J. Ortiz-de-Urbina, Angela Pieras-López, Marta Duero, Rosa Farré, Jordi Pijuan, Janet Hoenicka, James C. Sacchettini, Michael J. Petris, Vishal M. Gohil, Francesc Palau
Antiretroviral therapy (ART) prevents HIV-1 replication but does not eliminate the latent reservoir, the source of viral rebound if treatment is stopped. Autologous neutralizing antibodies (aNAbs) can block in vitro outgrowth of a subset of reservoir viruses and therefore potentially affect viral rebound upon ART interruption. We investigated aNAbs in 31 people with HIV-1 (PWH) on ART. Participants fell into two groups based on a high or low fraction of aNAb-resistant reservoir isolates, with most isolates being aNAb-resistant (IC50 >100 μg/ml). Time on uninterrupted ART was associated with higher aNAb resistance. However, pharmacodynamic analysis predicted that many isolates would be partially inhibited at physiologic IgG concentrations, to the same degree as by single antiretroviral drugs. Steep dose-response curve slopes, an indication of cooperativity, were observed for the rare isolates that were very strongly inhibited (>5 logs) by aNAbs. Resistance to aNAbs was not fully explained by declining in aNAb titers and may be driven partially by ADCC-mediated elimination of infected cells carrying aNAb-sensitive viruses over long time intervals, leaving only aNAb-resistant viruses which can contribute to viral rebound.
Natalie F. McMyn, Joseph Varriale, Hanna W. S. Wu, Vivek Hariharan, Milica Moskovljevic, Toong Seng Tan, Jun Lai, Anushka Singhal, Kenneth Lynn, Karam Mounzer, Pablo Tebas, Luis J. Montaner, Rebecca Hoh, Xu G. Yu, Mathias Lichterfeld, Francesco R. Simonetti, Colin Kovacs, Steven G. Deeks, Janet M. Siliciano, Robert F. Siliciano
Background: Anti-TNF biologics are widely used to treat patients with immune-mediated inflammatory diseases. In mouse models, the complete absence of TNF impairs germinal center (GC) responses. Less is known about the impact of anti-TNF therapy on specific immune responses in humans. Widespread vaccination against SARS-CoV-2 offered an unprecedented opportunity to investigate the effects of biological therapies on responses to specific immunization. Previous work demonstrated that inflammatory bowel disease (IBD) patients treated with anti-TNF biologics exhibit decreased Spike-specific antibody responses compared to IBD patients treated with anti-IL-12/23 or healthy controls, even after four doses of mRNA vaccine. Methods: Here we analyzed humoral responses to SARS-CoV-2 immunization using single-cell RNA-Sequencing and flow cytometry of Spike-specific memory B cells (MBC), as well as avidity measurements of plasma antibodies from IBD patients treated with anti-TNF or anti-IL-12/23 or from healthy controls. Results: We observed decreased somatic hypermutation in the B cell receptors of Spike-specific MBCs and decreased antigen-specific MBC accumulation following SARS-CoV-2 mRNA vaccination in anti-TNF treated IBD patients, compared to IBD patients treated with anti-IL-12/23 or healthy controls. This decreased somatic hypermutation in Spike-specific MBCs in anti-TNF treated patients correlated with decreased and delayed antibody affinity maturation and reduced neutralization activity. Conclusion: These data provide in vivo evidence that anti-TNF, but not anti-IL-12/23, therapy impairs the quantity and quality of antigen-specific GC outputs in humans. Funding: Juan and Stefania Speck (donation) and by Canadian Institutes of Health Research (CIHR)/COVID-Immunity Task Force (CITF) grants VR-1 172711, VS1-175545, GA2-177716, GA1-177703 and CIHR FDN 143301 &143350.
Michelle W. Cheung, Samantha Xu, Janna R. Shapiro, Freda Qi, Melanie Delgado-Brand, Karen Colwill, Roya Dayam, Ying Liu, Jenny Choi, Joanne M. Stempak, James M. Rini, Vinod Chandran, Mark S. Silverberg, Anne-Claude Gingras, Tania H. Watts
Pancreatic ductal adenocarcinoma (PDAC) has among the poorest prognosis and highest refractory rates of all tumor types. The reviews in this series, by Dr. Ben Z. Stanger, bring together experts across multiple disciplines to explore what makes PDAC and other pancreatic cancers so distinctively challenging and provide an update on recent multipronged approaches aimed at improving early diagnosis and treatment.
×