Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published February 1, 2010 Previous issue | Next issue

  • Volume 120, Issue 2
Go to section:
  • In this issue
  • Book Review
  • News
  • Commentaries
  • Research Articles
  • Corrigenda
In this issue
In This Issue
/articles/view/42243
Published February 1, 2010
Citation Information: J Clin Invest. 2010;120(2):397-397. https://doi.org/10.1172/JCI42243.
View: Text | PDF

In This Issue

  • Text
  • PDF
Abstract

Authors

×
Book Review
Am I making myself clear?: A scientist’s guide to talking to the public
Bruce V. Lewenstein
Bruce V. Lewenstein
Published February 1, 2010
Citation Information: J Clin Invest. 2010;120(2):400-400. https://doi.org/10.1172/JCI42033.
View: Text | PDF

Am I making myself clear?: A scientist’s guide to talking to the public

  • Text
  • PDF
Abstract

Authors

Bruce V. Lewenstein

×
News
Siamon Gordon on the challenges of retirement
Karen Honey
Karen Honey
Published February 1, 2010
Citation Information: J Clin Invest. 2010;120(2):398-399. https://doi.org/10.1172/JCI42070.
View: Text | PDF

Siamon Gordon on the challenges of retirement

  • Text
  • PDF
Abstract

Authors

Karen Honey

×
Commentaries
The role of genetic diversity in cancer
Lauren M.F. Merlo, Carlo C. Maley
Lauren M.F. Merlo, Carlo C. Maley
Published January 25, 2010
Citation Information: J Clin Invest. 2010;120(2):401-403. https://doi.org/10.1172/JCI42088.
View: Text | PDF

The role of genetic diversity in cancer

  • Text
  • PDF
Abstract

The role of genetic heterogeneity within neoplasms is increasingly recognized as important for understanding the dynamics of cancer progression, cancer stem cells, and therapeutic resistance, and there is interest in intratumoral heterogeneity measurements as potential biomarkers for risk stratification. In this issue of the JCI, Park et al. characterize this genetic diversity in carcinoma in situ and in invasive regions from 3 types of human breast cancers and lay the groundwork for translation of these measures to the clinic.

Authors

Lauren M.F. Merlo, Carlo C. Maley

×

TGF-β in the pathogenesis and prevention of disease: a matter of aneurysmic proportions
Harry C. Dietz
Harry C. Dietz
Published January 25, 2010
Citation Information: J Clin Invest. 2010;120(2):403-406. https://doi.org/10.1172/JCI42014.
View: Text | PDF

TGF-β in the pathogenesis and prevention of disease: a matter of aneurysmic proportions

  • Text
  • PDF
Abstract

TGF-β regulates many aspects of cellular performance relevant to tissue morphogenesis and homeostasis. Postnatal perturbation of TGF-β signaling contributes to the pathogenesis of many disease states, as recently exemplified through the study of Marfan syndrome (MFS), including aortic aneurysm and skeletal muscle myopathy. Heterogeneity in the regulation and consequences of TGF-β signaling, amplified in the context of disease, has engendered confusion and controversy regarding its utility as a therapeutic target. Three studies recently published in the JCI, including one in this issue, underscore the complexity of this subject. Heydemann and colleagues implicate dimorphic variation in latent TGF-β–binding protein 4 (LTBP4), a regulator of TGF-β bioavailability and activation, as a modifier of muscular dystrophy in γ-sarcoglycan–deficient mice. In contrast to experience with ascending aortic aneurysm in MFS, Wang and colleagues show that systemic abrogation of TGF-β signaling worsens (rather than attenuates) Ang II–induced abdominal aortic aneurysm progression in mice. Tieu and colleagues define alterations in the regulation of vascular inflammation in the pathogenesis of Ang II–induced aneurysm and dissection in mice, which may help shed some light on this apparent paradox.

Authors

Harry C. Dietz

×
Research Articles
Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents
Hideaki Kanazawa, … , Satoshi Ogawa, Keiichi Fukuda
Hideaki Kanazawa, … , Satoshi Ogawa, Keiichi Fukuda
Published January 4, 2010
Citation Information: J Clin Invest. 2010;120(2):408-421. https://doi.org/10.1172/JCI39778.
View: Text | PDF

Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents

  • Text
  • PDF
Abstract

Although several cytokines and neurotrophic factors induce sympathetic neurons to transdifferentiate into cholinergic neurons in vitro, the physiological and pathophysiological roles of this remain unknown. During congestive heart failure (CHF), sympathetic neural tone is upregulated, but there is a paradoxical reduction in norepinephrine synthesis and reuptake in the cardiac sympathetic nervous system (SNS). Here we examined whether cholinergic transdifferentiation can occur in the cardiac SNS in rodent models of CHF and investigated the underlying molecular mechanism(s) using genetically modified mice. We used Dahl salt-sensitive rats to model CHF and found that, upon CHF induction, the cardiac SNS clearly acquired cholinergic characteristics. Of the various cholinergic differentiation factors, leukemia inhibitory factor (LIF) and cardiotrophin-1 were strongly upregulated in the ventricles of rats with CHF. Further, LIF and cardiotrophin-1 secreted from cultured failing rat cardiomyocytes induced cholinergic transdifferentiation in cultured sympathetic neurons, and this process was reversed by siRNAs targeting Lif and cardiotrophin-1. Consistent with the data in rats, heart-specific overexpression of LIF in mice caused cholinergic transdifferentiation in the cardiac SNS. Further, SNS-specific targeting of the gene encoding the gp130 subunit of the receptor for LIF and cardiotrophin-1 in mice prevented CHF-induced cholinergic transdifferentiation. Cholinergic transdifferentiation was also observed in the cardiac SNS of autopsied patients with CHF. Thus, CHF causes target-dependent cholinergic transdifferentiation of the cardiac SNS via gp130-signaling cytokines secreted from the failing myocardium.

Authors

Hideaki Kanazawa, Masaki Ieda, Kensuke Kimura, Takahide Arai, Haruko Kawaguchi-Manabe, Tomohiro Matsuhashi, Jin Endo, Motoaki Sano, Takashi Kawakami, Tokuhiro Kimura, Toshiaki Monkawa, Matsuhiko Hayashi, Akio Iwanami, Hideyuki Okano, Yasunori Okada, Hatsue Ishibashi-Ueda, Satoshi Ogawa, Keiichi Fukuda

×

TGF-β activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II–infused mice
Yu Wang, … , Alain Tedgui, Ziad Mallat
Yu Wang, … , Alain Tedgui, Ziad Mallat
Published January 25, 2010
Citation Information: J Clin Invest. 2010;120(2):422-432. https://doi.org/10.1172/JCI38136.
View: Text | PDF

TGF-β activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II–infused mice

  • Text
  • PDF
Abstract

Complicated abdominal aortic aneurysm (AAA) is a major cause of mortality in elderly men. Ang II–dependent TGF-β activity promotes aortic aneurysm progression in experimental Marfan syndrome. However, the role of TGF-β in experimental models of AAA has not been comprehensively assessed. Here, we show that systemic neutralization of TGF-β activity breaks the resistance of normocholesterolemic C57BL/6 mice to Ang II–induced AAA formation and markedly increases their susceptibility to the disease. These aneurysms displayed a large spectrum of complications on echography, including fissuration, double channel formation, and rupture, leading to death from aneurysm complications. The disease was refractory to inhibition of IFN-γ, IL-4, IL-6, or TNF-α signaling. Genetic deletion of T and B cells or inhibition of the CX3CR1 pathway resulted in partial protection. Interestingly, neutralization of TGF-β activity enhanced monocyte invasiveness, and monocyte depletion markedly inhibited aneurysm progression and complications. Finally, TGF-β neutralization increased MMP-12 activity, and MMP-12 deficiency prevented aneurysm rupture. These results clearly identify a critical role for TGF-β in the taming of the innate immune response and the preservation of vessel integrity in C57BL/6 mice, which contrasts with its reported pathogenic role in Marfan syndrome.

Authors

Yu Wang, Hafid Ait-Oufella, Olivier Herbin, Philippe Bonnin, Bhama Ramkhelawon, Soraya Taleb, Jin Huang, Georges Offenstadt, Christophe Combadière, Laurent Rénia, Jason L. Johnson, Pierre-Louis Tharaux, Alain Tedgui, Ziad Mallat

×

Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease
Anne Joutel, … , Pierre Lacombe, Norbert Hubner
Anne Joutel, … , Pierre Lacombe, Norbert Hubner
Published January 11, 2010
Citation Information: J Clin Invest. 2010;120(2):433-445. https://doi.org/10.1172/JCI39733.
View: Text | PDF

Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease

  • Text
  • PDF
Abstract

Cerebral ischemic small vessel disease (SVD) is the leading cause of vascular dementia and a major contributor to stroke in humans. Dominant mutations in NOTCH3 cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic archetype of cerebral ischemic SVD. Progress toward understanding the pathogenesis of this disease and developing effective therapies has been hampered by the lack of a good animal model. Here, we report the development of a mouse model for CADASIL via the introduction of a CADASIL-causing Notch3 point mutation into a large P1-derived artificial chromosome (PAC). In vivo expression of the mutated PAC transgene in the mouse reproduced the endogenous Notch3 expression pattern and main pathological features of CADASIL, including Notch3 extracellular domain aggregates and granular osmiophilic material (GOM) deposits in brain vessels, progressive white matter damage, and reduced cerebral blood flow. Mutant mice displayed attenuated myogenic responses and reduced caliber of brain arteries as well as impaired cerebrovascular autoregulation and functional hyperemia. Further, we identified a substantial reduction of white matter capillary density. These neuropathological changes occurred in the absence of either histologically detectable alterations in cerebral artery structure or blood-brain barrier breakdown. These studies provide in vivo evidence for cerebrovascular dysfunction and microcirculatory failure as key contributors to hypoperfusion and white matter damage in this genetic model of ischemic SVD.

Authors

Anne Joutel, Marie Monet-Leprêtre, Claudia Gosele, Céline Baron-Menguy, Annette Hammes, Sabine Schmidt, Barbara Lemaire-Carrette, Valérie Domenga, Andreas Schedl, Pierre Lacombe, Norbert Hubner

×

Neural Wiskott-Aldrich syndrome protein modulates Wnt signaling and is required for hair follicle cycling in mice
Anna Lyubimova, … , Vladimir Botchkarev, Scott B. Snapper
Anna Lyubimova, … , Vladimir Botchkarev, Scott B. Snapper
Published January 11, 2010
Citation Information: J Clin Invest. 2010;120(2):446-456. https://doi.org/10.1172/JCI36478.
View: Text | PDF

Neural Wiskott-Aldrich syndrome protein modulates Wnt signaling and is required for hair follicle cycling in mice

  • Text
  • PDF
Abstract

The Rho family GTPases Cdc42 and Rac1 are critical regulators of the actin cytoskeleton and are essential for skin and hair function. Wiskott-Aldrich syndrome family proteins act downstream of these GTPases, controlling actin assembly and cytoskeletal reorganization, but their role in epithelial cells has not been characterized in vivo. Here, we used a conditional knockout approach to assess the role of neural Wiskott-Aldrich syndrome protein (N-WASP), the ubiquitously expressed Wiskott-Aldrich syndrome–like (WASL) protein, in mouse skin. We found that N-WASP deficiency in mouse skin led to severe alopecia, epidermal hyperproliferation, and ulceration, without obvious effects on epidermal differentiation and wound healing. Further analysis revealed that the observed alopecia was likely the result of a progressive and ultimately nearly complete block in hair follicle (HF) cycling by 5 months of age. N-WASP deficiency also led to abnormal proliferation of skin progenitor cells, resulting in their depletion over time. Furthermore, N-WASP deficiency in vitro and in vivo correlated with decreased GSK-3β phosphorylation, decreased nuclear localization of β-catenin in follicular keratinocytes, and decreased Wnt-dependent transcription. Our results indicate a critical role for N-WASP in skin function and HF cycling and identify a link between N-WASP and Wnt signaling. We therefore propose that N-WASP acts as a positive regulator of β-catenin–dependent transcription, modulating differentiation of HF progenitor cells.

Authors

Anna Lyubimova, John J. Garber, Geeta Upadhyay, Andrey Sharov, Florentina Anastasoaie, Vijay Yajnik, George Cotsarelis, Gian Paolo Dotto, Vladimir Botchkarev, Scott B. Snapper

×

Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells
Fanny Chalmin, … , Cédric Rébé, François Ghiringhelli
Fanny Chalmin, … , Cédric Rébé, François Ghiringhelli
Published January 19, 2010
Citation Information: J Clin Invest. 2010;120(2):457-471. https://doi.org/10.1172/JCI40483.
View: Text | PDF

Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells

  • Text
  • PDF
Abstract

Myeloid-derived suppressor cells (MDSCs) have been identified in humans and mice as a population of immature myeloid cells with the ability to suppress T cell activation. They accumulate in tumor-bearing mice and humans and have been shown to contribute to cancer development. Here, we have isolated tumor-derived exosomes (TDEs) from mouse cell lines and shown that an interaction between TDE-associated Hsp72 and MDSCs determines the suppressive activity of the MDSCs via activation of Stat3. In addition, tumor-derived soluble factors triggered MDSC expansion via activation of Erk. TDE-associated Hsp72 triggered Stat3 activation in MDSCs in a TLR2/MyD88-dependent manner through autocrine production of IL-6. Importantly, decreasing exosome production using dimethyl amiloride enhanced the in vivo antitumor efficacy of the chemotherapeutic drug cyclophosphamide in 3 different mouse tumor models. We also demonstrated that this mechanism is relevant in cancer patients, as TDEs from a human tumor cell line activated human MDSCs and triggered their suppressive function in an Hsp72/TLR2-dependent manner. Further, MDSCs from cancer patients treated with amiloride, a drug used to treat high blood pressure that also inhibits exosome formation, exhibited reduced suppressor functions. Collectively, our findings show in both mice and humans that Hsp72 expressed at the surface of TDEs restrains tumor immune surveillance by promoting MDSC suppressive functions.

Authors

Fanny Chalmin, Sylvain Ladoire, Grégoire Mignot, Julie Vincent, Mélanie Bruchard, Jean-Paul Remy-Martin, Wilfrid Boireau, Alain Rouleau, Benoit Simon, David Lanneau, Aurélie De Thonel, Gabriele Multhoff, Arlette Hamman, François Martin, Bruno Chauffert, Eric Solary, Laurence Zitvogel, Carmen Garrido, Bernhard Ryffel, Christophe Borg, Lionel Apetoh, Cédric Rébé, François Ghiringhelli

×

Cardiomyocyte PDGFR-β signaling is an essential component of the mouse cardiac response to load-induced stress
Vishnu Chintalgattu, … , Mark L. Entman, Aarif Y. Khakoo
Vishnu Chintalgattu, … , Mark L. Entman, Aarif Y. Khakoo
Published January 11, 2010
Citation Information: J Clin Invest. 2010;120(2):472-484. https://doi.org/10.1172/JCI39434.
View: Text | PDF

Cardiomyocyte PDGFR-β signaling is an essential component of the mouse cardiac response to load-induced stress

  • Text
  • PDF
Abstract

PDGFR is an important target for novel anticancer therapeutics because it is overexpressed in a wide variety of malignancies. Recently, however, several anticancer drugs that inhibit PDGFR signaling have been associated with clinical heart failure. Understanding this effect of PDGFR inhibitors has been difficult because the role of PDGFR signaling in the heart remains largely unexplored. As described herein, we have found that PDGFR-β expression and activation increase dramatically in the hearts of mice exposed to load-induced cardiac stress. In mice in which Pdgfrb was knocked out in the heart in development or in adulthood, exposure to load-induced stress resulted in cardiac dysfunction and heart failure. Mechanistically, we showed that cardiomyocyte PDGFR-β signaling plays a vital role in stress-induced cardiac angiogenesis. Specifically, we demonstrated that cardiomyocyte PDGFR-β was an essential upstream regulator of the stress-induced paracrine angiogenic capacity (the angiogenic potential) of cardiomyocytes. These results demonstrate that cardiomyocyte PDGFR-β is a regulator of the compensatory cardiac response to pressure overload–induced stress. Furthermore, our findings may provide insights into the mechanism of cardiotoxicity due to anticancer PDGFR inhibitors.

Authors

Vishnu Chintalgattu, Di Ai, Robert R. Langley, Jianhu Zhang, James A. Bankson, Tiffany L. Shih, Anilkumar K. Reddy, Kevin R. Coombes, Iyad N. Daher, Shibani Pati, Shalin S. Patel, Jennifer S. Pocius, George E. Taffet, L. Maximillian Buja, Mark L. Entman, Aarif Y. Khakoo

×

CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts
Christophe Ginestier, … , Gabriela Dontu, Max S. Wicha
Christophe Ginestier, … , Gabriela Dontu, Max S. Wicha
Published January 4, 2010
Citation Information: J Clin Invest. 2010;120(2):485-497. https://doi.org/10.1172/JCI39397.
View: Text | PDF

CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts

  • Text
  • PDF
Abstract

Recent evidence suggests that breast cancer and other solid tumors possess a rare population of cells capable of extensive self-renewal that contribute to metastasis and treatment resistance. We report here the development of a strategy to target these breast cancer stem cells (CSCs) through blockade of the IL-8 receptor CXCR1. CXCR1 blockade using either a CXCR1-specific blocking antibody or repertaxin, a small-molecule CXCR1 inhibitor, selectively depleted the CSC population in 2 human breast cancer cell lines in vitro. Furthermore, this was followed by the induction of massive apoptosis in the bulk tumor population via FASL/FAS signaling. The effects of CXCR1 blockade on CSC viability and on FASL production were mediated by the FAK/AKT/FOXO3A pathway. In addition, repertaxin was able to specifically target the CSC population in human breast cancer xenografts, retarding tumor growth and reducing metastasis. Our data therefore suggest that CXCR1 blockade may provide a novel means of targeting and eliminating breast CSCs.

Authors

Christophe Ginestier, Suling Liu, Mark E. Diebel, Hasan Korkaya, Ming Luo, Marty Brown, Julien Wicinski, Olivier Cabaud, Emmanuelle Charafe-Jauffret, Daniel Birnbaum, Jun-Lin Guan, Gabriela Dontu, Max S. Wicha

×

Centrosomal Nlp is an oncogenic protein that is gene-amplified in human tumors and causes spontaneous tumorigenesis in transgenic mice
Shujuan Shao, … , Xiao Yang, Qimin Zhan
Shujuan Shao, … , Xiao Yang, Qimin Zhan
Published January 19, 2010
Citation Information: J Clin Invest. 2010;120(2):498-507. https://doi.org/10.1172/JCI39447.
View: Text | PDF

Centrosomal Nlp is an oncogenic protein that is gene-amplified in human tumors and causes spontaneous tumorigenesis in transgenic mice

  • Text
  • PDF
Abstract

Disruption of mitotic events contributes greatly to genomic instability and results in mutator phenotypes. Indeed, abnormalities of mitotic components are closely associated with malignant transformation and tumorigenesis. Here we show that ninein-like protein (Nlp), a recently identified BRCA1-associated centrosomal protein involved in microtubule nucleation and spindle formation, is an oncogenic protein. Nlp was found to be overexpressed in approximately 80% of human breast and lung carcinomas analyzed. In human lung cancers, this deregulated expression was associated with NLP gene amplification. Further analysis revealed that Nlp exhibited strong oncogenic properties; for example, it conferred to NIH3T3 rodent fibroblasts the capacity for anchorage-independent growth in vitro and tumor formation in nude mice. Consistent with these data, transgenic mice overexpressing Nlp displayed spontaneous tumorigenesis in the breast, ovary, and testicle within 60 weeks. In addition, Nlp overexpression induced more rapid onset of radiation-induced lymphoma. Furthermore, mouse embryonic fibroblasts (MEFs) derived from Nlp transgenic mice showed centrosome amplification, suggesting that Nlp overexpression mimics BRCA1 loss. These findings demonstrate that Nlp abnormalities may contribute to genomic instability and tumorigenesis and suggest that Nlp might serve as a potential biomarker for clinical diagnosis and therapeutic target.

Authors

Shujuan Shao, Rong Liu, Yang Wang, Yongmei Song, Lihui Zuo, Liyan Xue, Ning Lu, Ning Hou, Mingrong Wang, Xiao Yang, Qimin Zhan

×

β-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice
John P. Morris IV, … , Sam C. Wang, Matthias Hebrok
John P. Morris IV, … , Sam C. Wang, Matthias Hebrok
Published January 11, 2010
Citation Information: J Clin Invest. 2010;120(2):508-520. https://doi.org/10.1172/JCI40045.
View: Text | PDF

β-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice

  • Text
  • PDF
Abstract

Cellular plasticity in adult organs is involved in both regeneration and carcinogenesis. WT mouse acinar cells rapidly regenerate following injury that mimics acute pancreatitis, a process characterized by transient reactivation of pathways involved in embryonic pancreatic development. In contrast, such injury promotes the development of pancreatic ductal adenocarcinoma (PDA) precursor lesions in mice expressing a constitutively active form of the GTPase, Kras, in the exocrine pancreas. The molecular environment that mediates acinar regeneration versus the development of PDA precursor lesions is poorly understood. Here, we used genetically engineered mice to demonstrate that mutant Kras promotes acinar-to-ductal metaplasia (ADM) and pancreatic cancer precursor lesion formation by blocking acinar regeneration following acute pancreatitis. Our results indicate that β-catenin is required for efficient acinar regeneration. In addition, canonical β-catenin signaling, a pathway known to regulate embryonic acinar development, is activated following acute pancreatitis. This regeneration-associated activation of β-catenin signaling was not observed during the initiation of Kras-induced acinar-to-ductal reprogramming. Furthermore, stabilized β-catenin signaling antagonized the ability of Kras to reprogram acini into PDA preneoplastic precursors. Therefore, these results suggest that β-catenin signaling is a critical determinant of acinar plasticity and that it is inhibited during Kras-induced fate decisions that specify PDA precursors, highlighting the importance of temporal regulation of embryonic signaling pathways in the development of neoplastic cell fates.

Authors

John P. Morris IV, David A. Cano, Shigeki Sekine, Sam C. Wang, Matthias Hebrok

×

The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients
Ruo-Kai Lin, … , Chung-Fan Lee, Yi-Ching Wang
Ruo-Kai Lin, … , Chung-Fan Lee, Yi-Ching Wang
Published January 19, 2010
Citation Information: J Clin Invest. 2010;120(2):521-532. https://doi.org/10.1172/JCI40706.
View: Text | PDF

The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients

  • Text
  • PDF
Abstract

DNA methyltransferase 1 (DNMT1) catalyzes DNA methylation and is overexpressed in many human diseases, including cancer. The tobacco-specific carcinogen NNK also induces DNA methylation. However, the role of DNMT1-mediated methylation in tobacco carcinogenesis remains unclear. Here we used human and mouse lung cancer samples and cell lines to determine a mechanism whereby NNK induced DNMT1 expression and activity. We determined that in a human lung cell line, glycogen synthase kinase 3β (GSK3β) phosphorylated DNMT1 to recruit β-transducin repeat–containing protein (βTrCP), resulting in DNMT1 degradation, and that NNK activated AKT, inhibiting GSK3β function and thereby attenuating DNMT1 degradation. NNK also induced βTrCP translocation to the cytoplasm via the heterogeneous nuclear ribonucleoprotein U (hnRNP-U) shuttling protein, resulting in DNMT1 nuclear accumulation and hypermethylation of the promoters of tumor suppressor genes. Fluorescence immunohistochemistry (IHC) of lung adenomas from NNK-treated mice and tumors from lung cancer patients that were smokers were characterized by disruption of the DNMT1/βTrCP interaction and DNMT1 nuclear accumulation. Importantly, DNMT1 overexpression in lung cancer patients who smoked continuously correlated with poor prognosis. We believe that the NNK-induced DNMT1 accumulation and subsequent hypermethylation of the promoter of tumor suppressor genes may lead to tumorigenesis and poor prognosis and provide an important link between tobacco smoking and lung cancer. Furthermore, this mechanism may also be involved in other smoking-related human diseases.

Authors

Ruo-Kai Lin, Yi-Shuan Hsieh, Pinpin Lin, Han-Shui Hsu, Chih-Yi Chen, Yen-An Tang, Chung-Fan Lee, Yi-Ching Wang

×

The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells
Romaine I. Fernando, … , Jeffrey Schlom, Claudia Palena
Romaine I. Fernando, … , Jeffrey Schlom, Claudia Palena
Published January 11, 2010
Citation Information: J Clin Invest. 2010;120(2):533-544. https://doi.org/10.1172/JCI38379.
View: Text | PDF

The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells

  • Text
  • PDF
Abstract

Metastatic disease is responsible for the majority of human cancer deaths. Understanding the molecular mechanisms of metastasis is a major step in designing effective cancer therapeutics. Here we show that the T-box transcription factor Brachyury induces in tumor cells epithelial-mesenchymal transition (EMT), an important step in the progression of primary tumors toward metastasis. Overexpression of Brachyury in human carcinoma cells induced changes characteristic of EMT, including upregulation of mesenchymal markers, downregulation of epithelial markers, and an increase in cell migration and invasion. Brachyury overexpression also repressed E-cadherin transcription, an effect partially mediated by Slug. Conversely, inhibition of Brachyury resulted in downregulation of mesenchymal markers and loss of cell migration and invasion and diminished the ability of human tumor cells to form lung metastases in a xenograft model. Furthermore, we found Brachyury to be overexpressed in various human tumor tissues and tumor cell lines compared with normal tissues. We also determined that the percentage of human lung tumor tissues positive for Brachyury expression increased with the stage of the tumor, indicating a potential association between Brachyury and tumor progression. The selective expression of Brachyury in tumor cells and its role in EMT and cancer progression suggest that Brachyury may be an attractive target for antitumor therapies.

Authors

Romaine I. Fernando, Mary Litzinger, Paola Trono, Duane H. Hamilton, Jeffrey Schlom, Claudia Palena

×

Deleted in breast cancer–1 regulates SIRT1 activity and contributes to high-fat diet–induced liver steatosis in mice
Carlos Escande, … , Zhenkun Lou, Eduardo Nunes Chini
Carlos Escande, … , Zhenkun Lou, Eduardo Nunes Chini
Published January 11, 2010
Citation Information: J Clin Invest. 2010;120(2):545-558. https://doi.org/10.1172/JCI39319.
View: Text | PDF

Deleted in breast cancer–1 regulates SIRT1 activity and contributes to high-fat diet–induced liver steatosis in mice

  • Text
  • PDF
Abstract

The enzyme sirtuin 1 (SIRT1) is a critical regulator of many cellular functions, including energy metabolism. However, the precise mechanisms that modulate SIRT1 activity remain unknown. As SIRT1 activity in vitro was recently found to be negatively regulated by interaction with the deleted in breast cancer–1 (DBC1) protein, we set out to investigate whether DBC1 regulates SIRT1 activity in vivo. We found that DBC1 and SIRT1 colocalized and interacted, and that DBC1 modulated SIRT1 activity, in multiple cell lines and tissues. In mouse liver, increased SIRT1 activity, concomitant with decreased DBC1-SIRT1 interaction, was detected after 24 hours of starvation, whereas decreased SIRT1 activity and increased interaction with DBC1 was observed with high-fat diet (HFD) feeding. Consistent with the hypothesis that DBC1 is crucial for HFD-induced inhibition of SIRT1 and for the development of experimental liver steatosis, genetic deletion of Dbc1 in mice led to increased SIRT1 activity in several tissues, including liver. Furthermore, DBC1-deficient mice were protected from HFD-induced liver steatosis and inflammation, despite the development of obesity. These observations define what we believe to be a new role for DBC1 as an in vivo regulator of SIRT1 activity and liver steatosis. We therefore propose that the DBC1-SIRT1 interaction may serve as a new target for therapies aimed at nonalcoholic liver steatosis.

Authors

Carlos Escande, Claudia C.S. Chini, Veronica Nin, Katherine Minter Dykhouse, Colleen M. Novak, James Levine, Jan van Deursen, Gregory J. Gores, Junjie Chen, Zhenkun Lou, Eduardo Nunes Chini

×

Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion
Zubin M. Bamboat, … , George Plitas, Ronald P. DeMatteo
Zubin M. Bamboat, … , George Plitas, Ronald P. DeMatteo
Published January 19, 2010
Citation Information: J Clin Invest. 2010;120(2):559-569. https://doi.org/10.1172/JCI40008.
View: Text | PDF

Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion

  • Text
  • PDF
Abstract

TLRs are recognized as promoters of tissue damage, even in the absence of pathogens. TLR binding to damage-associated molecular patterns (DAMPs) released by injured host cells unleashes an inflammatory cascade that amplifies tissue destruction. However, whether TLRs possess the reciprocal ability to curtail the extent of sterile inflammation is uncertain. Here, we investigated this possibility in mice by studying the role of conventional DCs (cDCs) in liver ischemia/reperfusion (I/R) injury, a model of sterile inflammation. Targeted depletion of mouse cDCs increased liver injury after I/R, as assessed by serum alanine aminotransferase and histologic analysis. In vitro, we identified hepatocyte DNA as an endogenous ligand to TLR9 that promoted cDCs to secrete IL-10. In vivo, cDC production of IL-10 required TLR9 and reduced liver injury. In addition, we found that inflammatory monocytes recruited to the liver via chemokine receptor 2 were downstream targets of cDC IL-10. IL-10 from cDCs reduced production of TNF, IL-6, and ROS by inflammatory monocytes. Our results implicate inflammatory monocytes as mediators of liver I/R injury and reveal that cDCs respond to DAMPS during sterile inflammation, providing the host with protection from progressive tissue damage.

Authors

Zubin M. Bamboat, Lee M. Ocuin, Vinod P. Balachandran, Hebroon Obaid, George Plitas, Ronald P. DeMatteo

×

TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice
José M. González-Navajas, … , Jongdae Lee, Eyal Raz
José M. González-Navajas, … , Jongdae Lee, Eyal Raz
Published January 4, 2010
Citation Information: J Clin Invest. 2010;120(2):570-581. https://doi.org/10.1172/JCI40055.
View: Text | PDF

TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice

  • Text
  • PDF
Abstract

TLRs sense various microbial products. Their function has been best characterized in DCs and macrophages, where they act as important mediators of innate immunity. TLR4 is also expressed on CD4+ T cells, but its physiological function on these cells remains unknown. Here, we have shown that TLR4 triggering on CD4+ T cells affects their phenotype and their ability to provoke intestinal inflammation. In a model of spontaneous colitis, Il10–/–Tlr4–/– mice displayed accelerated development of disease, with signs of overt colitis as early as 8 weeks of age, when compared with Il10–/– and Il10–/–Tlr9–/– mice, which did not develop colitis by 8 months. Similar results were obtained in a second model of colitis in which transfer of naive Il10–/–Tlr4–/– CD4+ T cells into Rag1–/– recipients sufficient for both IL-10 and TLR4 induced more aggressive colitis than the transfer of naive Il10–/– CD4+ T cells. Mechanistically, LPS stimulation of TLR4-bearing CD4+ T cells inhibited ERK1/2 activation upon subsequent TCR stimulation via the induction of MAPK phosphatase 3 (MKP-3). Our data therefore reveal a tonic inhibitory role for TLR4 signaling on subsequent TCR-dependent CD4+ T cell responses.

Authors

José M. González-Navajas, Sean Fine, Jason Law, Sandip K. Datta, Kim P. Nguyen, Mandy Yu, Maripat Corr, Kyoko Katakura, Lars Eckman, Jongdae Lee, Eyal Raz

×

Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice
Emma C. Walker, … , T. John Martin, Natalie A. Sims
Emma C. Walker, … , T. John Martin, Natalie A. Sims
Published January 4, 2010
Citation Information: J Clin Invest. 2010;120(2):582-592. https://doi.org/10.1172/JCI40568.
View: Text | PDF

Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice

  • Text
  • PDF
Abstract

Effective osteoporosis therapy requires agents that increase the amount and/or quality of bone. Any modification of osteoclast-mediated bone resorption by disease or drug treatment, however, elicits a parallel change in osteoblast-mediated bone formation because the processes are tightly coupled. Anabolic approaches now focus on uncoupling osteoblast action from osteoclast formation, for example, by inhibiting sclerostin, an inhibitor of bone formation that does not influence osteoclast differentiation. Here, we report that oncostatin M (OSM) is produced by osteoblasts and osteocytes in mouse bone and that it has distinct effects when acting through 2 different receptors, OSM receptor (OSMR) and leukemia inhibitory factor receptor (LIFR). Specifically, mouse OSM (mOSM) inhibited sclerostin production in a stromal cell line and in primary murine osteoblast cultures by acting through LIFR. In contrast, when acting through OSMR, mOSM stimulated RANKL production and osteoclast formation. A key role for OSMR in bone turnover was confirmed by the osteopetrotic phenotype of mice lacking OSMR. Furthermore, in contrast to the accepted model, in which mOSM acts only through OSMR, mOSM inhibited sclerostin expression in Osmr–/– osteoblasts and enhanced bone formation in vivo. These data reveal what we believe to be a novel pathway by which bone formation can be stimulated independently of bone resorption and provide new insights into OSMR and LIFR signaling that are relevant to other medical conditions, including cardiovascular and neurodegenerative diseases and cancer.

Authors

Emma C. Walker, Narelle E. McGregor, Ingrid J. Poulton, Melissa Solano, Sueli Pompolo, Tania J. Fernandes, Matthew J. Constable, Geoff C. Nicholson, Jian-Guo Zhang, Nicos A. Nicola, Matthew T. Gillespie, T. John Martin, Natalie A. Sims

×

c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis
Shenghao Jin, … , Anna Kalota, Alan M. Gewirtz
Shenghao Jin, … , Anna Kalota, Alan M. Gewirtz
Published January 19, 2010
Citation Information: J Clin Invest. 2010;120(2):593-606. https://doi.org/10.1172/JCI38030.
View: Text | PDF

c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis

  • Text
  • PDF
Abstract

Mixed-lineage leukemia (MLL) is a proto-oncogene frequently involved in chromosomal translocations associated with acute leukemia. These chromosomal translocations commonly result in MLL fusion proteins that dysregulate transcription. Recent data suggest that the MYB proto-oncogene, which is an important regulator of hematopoietic cell development, has a role in leukemogenesis driven by the MLL-ENL fusion protein, but exactly how is unclear. Here we have demonstrated that c-Myb is recruited to the MLL histone methyl transferase complex by menin, a protein important for MLL-associated leukemic transformation, and that it contributes substantially to MLL-mediated methylation of histone H3 at lysine 4 (H3K4). Silencing MYB in human leukemic cell lines and primary patient material evoked a global decrease in H3K4 methylation, an unexpected decrease in HOXA9 and MEIS1 gene expression, and decreased MLL and menin occupancy in the HOXA9 gene locus. This decreased occupancy was associated with a diminished ability of an MLL-ENL fusion protein to transform normal mouse hematopoietic cells. Previous studies have shown that MYB expression is regulated by Hoxa9 and Meis1, indicating the existence of an autoregulatory feedback loop. The finding that c-Myb has the ability to direct epigenetic marks, along with its participation in an autoregulatory feedback loop with genes known to transform hematopoietic cells, lends mechanistic and translationally relevant insight into its role in MLL-associated leukemogenesis.

Authors

Shenghao Jin, Huiwu Zhao, Yan Yi, Yuji Nakata, Anna Kalota, Alan M. Gewirtz

×

Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice
Qing Zhu, … , Dennis M. Klinman, Jay A. Berzofsky
Qing Zhu, … , Dennis M. Klinman, Jay A. Berzofsky
Published January 25, 2010
Citation Information: J Clin Invest. 2010;120(2):607-616. https://doi.org/10.1172/JCI39293.
View: Text | PDF

Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice

  • Text
  • PDF
Abstract

TLR ligands are promising candidates for the development of novel vaccine adjuvants that can elicit protective immunity against emerging infectious diseases. Adjuvants have been used most frequently to increase the quantity of an immune response. However, the quality of a T cell response can be more important than its quantity. Stimulating certain pairs of TLRs induces a synergistic response in terms of activating dendritic cells and eliciting/enhancing T cell responses through clonal expansion, which increases the number of responding T cells. Here, we have found that utilizing ligands for 3 TLRs (TLR2/6, TLR3, and TLR9) greatly increased the protective efficacy of vaccination with an HIV envelope peptide in mice when compared with using ligands for only any 2 of these TLRs; surprisingly, increased protection was induced without a marked increase in the number of peptide-specific T cells. Rather, the combination of these 3 TLR ligands augmented the quality of the T cell responses primarily by amplifying their functional avidity for the antigen, which was necessary for clearance of virus. The triple combination increased production of DC IL-15 along with its receptor, IL-15Rα, which contributed to high avidity, and decreased expression of programmed death–ligand 1 and induction of Tregs. Therefore, selective TLR ligand combinations can increase protective efficacy by increasing the quality rather than the quantity of T cell responses.

Authors

Qing Zhu, Colt Egelston, Susan Gagnon, Yongjun Sui, Igor M. Belyakov, Dennis M. Klinman, Jay A. Berzofsky

×

Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging
Katrin Wittköpper, … , Thomas Eschenhagen, Ali El-Armouche
Katrin Wittköpper, … , Thomas Eschenhagen, Ali El-Armouche
Published January 11, 2010
Citation Information: J Clin Invest. 2010;120(2):617-626. https://doi.org/10.1172/JCI40545.
View: Text | PDF

Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging

  • Text
  • PDF
Abstract

Phosphatase inhibitor-1 (I-1) is a distal amplifier element of β-adrenergic signaling that functions by preventing dephosphorylation of downstream targets. I-1 is downregulated in human failing hearts, while overexpression of a constitutively active mutant form (I-1c) reverses contractile dysfunction in mouse failing hearts, suggesting that I-1c may be a candidate for gene therapy. We generated mice with conditional cardiomyocyte-restricted expression of I-1c (referred to herein as dTGI-1c mice) on an I-1–deficient background. Young adult dTGI-1c mice exhibited enhanced cardiac contractility but exaggerated contractile dysfunction and ventricular dilation upon catecholamine infusion. Telemetric ECG recordings revealed typical catecholamine-induced ventricular tachycardia and sudden death. Doxycycline feeding switched off expression of cardiomyocyte-restricted I-1c and reversed all abnormalities. Hearts from dTGI-1c mice showed hyperphosphorylation of phospholamban and the ryanodine receptor, and this was associated with an increased number of catecholamine-induced Ca2+ sparks in isolated myocytes. Aged dTGI-1c mice spontaneously developed a cardiomyopathic phenotype. These data were confirmed in a second independent transgenic mouse line, expressing a full-length I-1 mutant that could not be phosphorylated and thereby inactivated by PKC-α (I-1S67A). In conclusion, conditional expression of I-1c or I-1S67A enhanced steady-state phosphorylation of 2 key Ca2+-regulating sarcoplasmic reticulum enzymes. This was associated with increased contractile function in young animals but also with arrhythmias and cardiomyopathy after adrenergic stress and with aging. These data should be considered in the development of novel therapies for heart failure.

Authors

Katrin Wittköpper, Larissa Fabritz, Stefan Neef, Katharina R. Ort, Clemens Grefe, Bernhard Unsöld, Paulus Kirchhof, Lars S. Maier, Gerd Hasenfuss, Dobromir Dobrev, Thomas Eschenhagen, Ali El-Armouche

×

Statins protect against fulminant pneumococcal infection and cytolysin toxicity in a mouse model of sickle cell disease
Jason W. Rosch, … , Carlos J. Orihuela, Elaine I. Tuomanen
Jason W. Rosch, … , Carlos J. Orihuela, Elaine I. Tuomanen
Published January 19, 2010
Citation Information: J Clin Invest. 2010;120(2):627-635. https://doi.org/10.1172/JCI39843.
View: Text | PDF

Statins protect against fulminant pneumococcal infection and cytolysin toxicity in a mouse model of sickle cell disease

  • Text
  • PDF
Abstract

Sickle cell disease (SCD) is characterized by intravascular hemolysis and inflammation coupled to a 400-fold greater incidence of invasive pneumococcal infection resulting in fulminant, lethal pneumococcal sepsis. Mechanistically, invasive infection is facilitated by a proinflammatory state that enhances receptor-mediated endocytosis of pneumococci into epithelial and endothelial cells. As statins reduce chronic inflammation, in addition to their serum cholesterol-lowering effects, we hypothesized that statin therapy might improve the outcome of pneumococcal infection in SCD. In this study, we tested this hypothesis in an experimental SCD mouse model and found that statin therapy prolonged survival following pneumococcal challenge. The protective effect resulted in part from decreased platelet-activating factor receptor expression on endothelia and epithelia, which led to reduced bacterial invasion. An additional protective effect resulted from inhibition of host cell lysis by pneumococcal cholesterol-dependent cytotoxins (CDCs), including pneumolysin. We conclude therefore that statins may be of prophylactic benefit against invasive pneumococcal disease in patients with SCD and, more broadly, in settings of bacterial pathogenesis driven by receptor-mediated endocytosis and the CDC class of toxins produced by Gram-positive invasive bacteria.

Authors

Jason W. Rosch, Angela R. Boyd, Ernesto Hinojosa, Tamara Pestina, Yunming Hu, Derek A. Persons, Carlos J. Orihuela, Elaine I. Tuomanen

×

Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype
So Yeon Park, … , Franziska Michor, Kornelia Polyak
So Yeon Park, … , Franziska Michor, Kornelia Polyak
Published January 25, 2010
Citation Information: J Clin Invest. 2010;120(2):636-644. https://doi.org/10.1172/JCI40724.
View: Text | PDF Technical Advance

Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype

  • Text
  • PDF
Abstract

Intratumor genetic heterogeneity is a key mechanism underlying tumor progression and therapeutic resistance. The prevailing model for explaining intratumor diversity, the clonal evolution model, has recently been challenged by proponents of the cancer stem cell hypothesis. To investigate this issue, we performed combined analyses of markers associated with cellular differentiation states and genotypic alterations in human breast carcinomas and evaluated diversity with ecological and evolutionary methods. Our analyses showed a high degree of genetic heterogeneity both within and between distinct tumor cell populations that were defined based on markers of cellular phenotypes including stem cell–like characteristics. In several tumors, stem cell–like and more-differentiated cancer cell populations were genetically distinct, leading us to question the validity of a simple differentiation hierarchy–based cancer stem cell model. The degree of diversity correlated with clinically relevant breast tumor subtypes and in some tumors was markedly different between the in situ and invasive cell populations. We also found that diversity measures were associated with clinical variables. Our findings highlight the importance of genetic diversity in intratumor heterogeneity and the value of analyzing tumors as distinct populations of cancer cells to more effectively plan treatments.

Authors

So Yeon Park, Mithat Gönen, Hee Jung Kim, Franziska Michor, Kornelia Polyak

×
Corrigenda
A positive FGFR3/FOXN1 feedback loop underlies benign skin keratosis versus squamous cell carcinoma formation in humans
Anna Mandinova, … , Janice L. Brissette, G. Paolo Dotto
Anna Mandinova, … , Janice L. Brissette, G. Paolo Dotto
Published February 1, 2010
Citation Information: J Clin Invest. 2010;120(2):645-645. https://doi.org/10.1172/JCI38543C1.
View: Text | PDF | Amended Article

A positive FGFR3/FOXN1 feedback loop underlies benign skin keratosis versus squamous cell carcinoma formation in humans

  • Text
  • PDF
Abstract

Authors

Anna Mandinova, Vihren Kolev, Victor Neel, Bing Hu, Wesley Stonely, Jocelyn Lieb, Xunwei Wu, Claudia Colli, Rong Han, Michael J. Pazin, Paola Ostano, Reinhard Dummer, Janice L. Brissette, G. Paolo Dotto

×

Latent TGF-β–binding protein 4 modifies muscular dystrophy in mice
Ahlke Heydemann, … , Abraham A. Palmer, Elizabeth M. McNally
Ahlke Heydemann, … , Abraham A. Palmer, Elizabeth M. McNally
Published February 1, 2010
Citation Information: J Clin Invest. 2010;120(2):645-645. https://doi.org/10.1172/JCI39845C1.
View: Text | PDF | Amended Article

Latent TGF-β–binding protein 4 modifies muscular dystrophy in mice

  • Text
  • PDF
Abstract

Authors

Ahlke Heydemann, Ermelinda Ceco, Jackie E. Lim, Michele Hadhazy, Pearl Ryder, Jennifer L. Moran, David R. Beier, Abraham A. Palmer, Elizabeth M. McNally

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts