Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119835

Pharmacologic control of a humanized gene therapy system implanted into nude mice.

S R Magari, V M Rivera, J D Iuliucci, M Gilman, and F Cerasoli Jr

ARIAD Gene Therapeutics, Cambridge, Massachusetts 02139, USA.

Find articles by Magari, S. in: JCI | PubMed | Google Scholar

ARIAD Gene Therapeutics, Cambridge, Massachusetts 02139, USA.

Find articles by Rivera, V. in: JCI | PubMed | Google Scholar

ARIAD Gene Therapeutics, Cambridge, Massachusetts 02139, USA.

Find articles by Iuliucci, J. in: JCI | PubMed | Google Scholar

ARIAD Gene Therapeutics, Cambridge, Massachusetts 02139, USA.

Find articles by Gilman, M. in: JCI | PubMed | Google Scholar

ARIAD Gene Therapeutics, Cambridge, Massachusetts 02139, USA.

Find articles by Cerasoli, F. in: JCI | PubMed | Google Scholar

Published December 1, 1997 - More info

Published in Volume 100, Issue 11 on December 1, 1997
J Clin Invest. 1997;100(11):2865–2872. https://doi.org/10.1172/JCI119835.
© 1997 The American Society for Clinical Investigation
Published December 1, 1997 - Version history
View PDF
Abstract

Systemic delivery of specific therapeutic proteins by a parenteral route of administration is a recognized practice in the management of several gene defects and acquired diseases. As an alternative to repetitive parenteral administration, gene therapy may provide a novel means for systemic delivery of therapeutic proteins while improving patient compliance and therapeutic efficacy. However, for gene therapy to be an efficacious and safe approach to the clinical management of such diseases, gene expression must be tightly regulated. These investigations demonstrate precise in vivo control of protein expression from cells that are engineered to secrete human growth hormone (hGH) in response to stimulation by rapamycin. The cells were implanted intramuscularly into nu/nu mice and stimulated by intravenous or oral administration of rapamycin. In vivo experiments demonstrate that the activity and pharmacokinetics of rapamycin determine the level of serum hGH that result from the engineered cells. In addition, responsiveness of the cells to rapamycin, number of cells implanted, hGH expression kinetics, and the pharmacokinetics of hGH itself, also influence the circulating levels of hGH after rapamycin stimulation. Controlled manipulation of several of these parameters, either independently or in combination, allows for precise regulation of circulating hGH concentration in vivo.

Version history
  • Version 1 (December 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts