Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106264

Hepatic metabolism of free fatty acids in normal and diabetic dogs

Laurence V. Basso and Richard J. Havel

1Cardiovascular Research Institute and Department of Medicine, University of California, San Francisco Medical Center, San Francisco, California 94122

Find articles by Basso, L. in: PubMed | Google Scholar

1Cardiovascular Research Institute and Department of Medicine, University of California, San Francisco Medical Center, San Francisco, California 94122

Find articles by Havel, R. in: PubMed | Google Scholar

Published March 1, 1970 - More info

Published in Volume 49, Issue 3 on March 1, 1970
J Clin Invest. 1970;49(3):537–547. https://doi.org/10.1172/JCI106264.
© 1970 The American Society for Clinical Investigation
Published March 1, 1970 - Version history
View PDF
Abstract

Fasted dogs prepared with catheters in the femoral artery, portal vein, and hepatic vein and infused intravenously with palmitate-1-14C were used to estimate uptake of free fatty acids in liver and their conversion to major metabolic products secreted into hepatic venous blood. Animals were studied under ordinary conditions and when fat mobilization was increased abruptly by infusing norepinephrine or for a prolonged period by withdrawing insulin from depancreatized dogs. 80% of hepatic blood flow was assumed to be derived from the portal vein.

Hepatic uptake was proportional to net outflow transport of plasma free fatty acids in the three groups and, in each, hepatic extraction fraction was about 25%. Since specific activity of free fatty acids entering and leaving the liver was equal and their composition was closely similar in the three sites sampled, it was concluded that palmitate is a representative tracer for free fatty acids entering the liver and that the liver does not release free fatty acids into the blood.

In norepinephrine-infused dogs, the fraction of free fatty acids secreted in triglycerides (13%) was similar to that of control animals, so that transport of triglycerides was increased. In diabetic dogs no increased transport could be demonstrated since an average of only 2% of free fatty acids was converted to plasma triglyceride fatty acids; the hyperlipemia uniformly observed therefore appeared to result from defective removal of triglycerides from the blood.

A similar fraction of free fatty acids was converted to ketones in normal and norepinephrine-infused dogs. This fraction was somewhat higher in diabetic animals and, in addition, a substantial quantity of ketones was derived from unlabeled precursors. Fractional conversion of free fatty acids to CO2 was similar in normal and norepinephrine-infused dogs, but reduced in the diabetics.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 537
page 537
icon of scanned page 538
page 538
icon of scanned page 539
page 539
icon of scanned page 540
page 540
icon of scanned page 541
page 541
icon of scanned page 542
page 542
icon of scanned page 543
page 543
icon of scanned page 544
page 544
icon of scanned page 545
page 545
icon of scanned page 546
page 546
icon of scanned page 547
page 547
Version history
  • Version 1 (March 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts