Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI1649

Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase.

M Aviram, M Rosenblat, C L Bisgaier, R S Newton, S L Primo-Parmo, and B N La Du

The Lipid Research Laboratory, Technion Faculty of Medicine, the Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel, 31096. aviram@tx.technion.ac.il

Find articles by Aviram, M. in: JCI | PubMed | Google Scholar

The Lipid Research Laboratory, Technion Faculty of Medicine, the Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel, 31096. aviram@tx.technion.ac.il

Find articles by Rosenblat, M. in: JCI | PubMed | Google Scholar

The Lipid Research Laboratory, Technion Faculty of Medicine, the Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel, 31096. aviram@tx.technion.ac.il

Find articles by Bisgaier, C. in: JCI | PubMed | Google Scholar

The Lipid Research Laboratory, Technion Faculty of Medicine, the Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel, 31096. aviram@tx.technion.ac.il

Find articles by Newton, R. in: JCI | PubMed | Google Scholar

The Lipid Research Laboratory, Technion Faculty of Medicine, the Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel, 31096. aviram@tx.technion.ac.il

Find articles by Primo-Parmo, S. in: JCI | PubMed | Google Scholar

The Lipid Research Laboratory, Technion Faculty of Medicine, the Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel, 31096. aviram@tx.technion.ac.il

Find articles by La Du, B. in: JCI | PubMed | Google Scholar

Published April 15, 1998 - More info

Published in Volume 101, Issue 8 on April 15, 1998
J Clin Invest. 1998;101(8):1581–1590. https://doi.org/10.1172/JCI1649.
© 1998 The American Society for Clinical Investigation
Published April 15, 1998 - Version history
View PDF
Abstract

HDL levels are inversely related to the risk of developing atherosclerosis. In serum, paraoxonase (PON) is associated with HDL, and was shown to inhibit LDL oxidation. Whether PON also protects HDL from oxidation is unknown, and was determined in the present study. In humans, we found serum HDL PON activity and HDL susceptibility to oxidation to be inversely correlated (r2 = 0.77, n = 15). Supplementing human HDL with purified PON inhibited copper-induced HDL oxidation in a concentration-dependent manner. Adding PON to HDL prolonged the oxidation lag phase and reduced HDL peroxide and aldehyde formation by up to 95%. This inhibitory effect was most pronounced when PON was added before oxidation initiation. When purified PON was added to whole serum, essentially all of it became HDL-associated. The PON-enriched HDL was more resistant to copper ion-induced oxidation than was control HDL. Compared with control HDL, HDL from PON-treated serum showed a 66% prolongation in the lag phase of its oxidation, and up to a 40% reduction in peroxide and aldehyde content. In contrast, in the presence of various PON inhibitors, HDL oxidation induced by either copper ions or by a free radical generating system was markedly enhanced. As PON inhibited HDL oxidation, two major functions of HDL were assessed: macrophage cholesterol efflux, and LDL protection from oxidation. Compared with oxidized untreated HDL, oxidized PON-treated HDL caused a 45% increase in cellular cholesterol efflux from J-774 A.1 macrophages. Both HDL-associated PON and purified PON were potent inhibitors of LDL oxidation. Searching for a possible mechanism for PON-induced inhibition of HDL oxidation revealed PON (2 paraoxonase U/ml)-mediated hydrolysis of lipid peroxides (by 19%) and of cholesteryl linoleate hydroperoxides (by 90%) in oxidized HDL. HDL-associated PON, as well as purified PON, were also able to substantially hydrolyze (up to 25%) hydrogen peroxide (H2O2), a major reactive oxygen species produced under oxidative stress during atherogenesis. Finally, we analyzed serum PON activity in the atherosclerotic apolipoprotein E-deficient mice during aging and development of atherosclerotic lesions. With age, serum lipid peroxidation and lesion size increased, whereas serum PON activity decreased. We thus conclude that HDL-associated PON possesses peroxidase-like activity that can contribute to the protective effect of PON against lipoprotein oxidation. The presence of PON in HDL may thus be a major contributor to the antiatherogenicity of this lipoprotein.

Version history
  • Version 1 (April 15, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts