Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119076

Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability.

S Rajagopalan, X P Meng, S Ramasamy, D G Harrison, and Z S Galis

Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Find articles by Rajagopalan, S. in: PubMed | Google Scholar

Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Find articles by Meng, X. in: PubMed | Google Scholar

Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Find articles by Ramasamy, S. in: PubMed | Google Scholar

Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Find articles by Harrison, D. in: PubMed | Google Scholar

Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Find articles by Galis, Z. in: PubMed | Google Scholar

Published December 1, 1996 - More info

Published in Volume 98, Issue 11 on December 1, 1996
J Clin Invest. 1996;98(11):2572–2579. https://doi.org/10.1172/JCI119076.
© 1996 The American Society for Clinical Investigation
Published December 1, 1996 - Version history
View PDF
Abstract

Vulnerable areas of atherosclerotic plaques often contain lipid-laden macrophages and display matrix metalloproteinase activity. We hypothesized that reactive oxygen species released by macrophage-derived foam cells could trigger activation of latent proforms of metalloproteinases in the vascular interstitium. We showed that in vivo generated macrophage foam cells produce superoxide, nitric oxide, and hydrogen peroxide after isolation from hypercholesterolemic rabbits. Effects of these reactive oxygens and that of peroxynitrite, likely to result from simultaneous production of nitric oxide and superoxide, were tested in vitro using metalloproteinases secreted by cultured human vascular smooth muscle cells. Enzymes in culture media or affinity-purified (pro-MMP-2 and MMP-9) were examined by SDS-PAGE zymography, Western blotting, and enzymatic assays. Under the conditions used, incubation with xanthine/xanthine oxidase increased the amount of active gelatinases, while nitric oxide donors had no noticeable effect. Incubation with peroxynitrite resulted in nitration of MMP-2 and endowed it with collagenolytic activity. Hydrogen peroxide treatment showed a catalase-reversible biphasic effect (gelatinase activation at concentrations of 4 microM, inhibition at > or = 10-50 microM). Thus, reactive oxygen species can modulate matrix degradation in areas of high oxidant stress and could therefore contribute to instability of atherosclerotic plaques.

Version history
  • Version 1 (December 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts