Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Reversal of established autoimmune diabetes by restoration of endogenous β cell function
Shinichiro Ryu, … , David A. Schoenfeld, Denise L. Faustman
Shinichiro Ryu, … , David A. Schoenfeld, Denise L. Faustman
Published July 1, 2001
Citation Information: J Clin Invest. 2001;108(1):63-72. https://doi.org/10.1172/JCI12335.
View: Text | PDF
Article

Reversal of established autoimmune diabetes by restoration of endogenous β cell function

  • Text
  • PDF
Abstract

In NOD (nonobese diabetic) mice, a model of autoimmune diabetes, various immunomodulatory interventions prevent progression to diabetes. However, after hyperglycemia is established, such interventions rarely alter the course of disease or allow sustained engraftment of islet transplants. A proteasome defect in lymphoid cells of NOD mice impairs the presentation of self antigens and increases the susceptibility of these cells to TNF-α–induced apoptosis. Here, we examine the hypothesis that induction of TNF-α expression combined with reeducation of newly emerging T cells with self antigens can interrupt autoimmunity. Hyperglycemic NOD mice were treated with CFA to induce TNF-α expression and were exposed to functional complexes of MHC class I molecules and antigenic peptides either by repeated injection of MHC class I matched splenocytes or by transplantation of islets from nonautoimmune donors. Hyperglycemia was controlled in animals injected with splenocytes by administration of insulin or, more effectively, by implantation of encapsulated islets. These interventions reversed the established β cell–directed autoimmunity and restored endogenous pancreatic islet function to such an extent that normoglycemia was maintained in up to 75% of animals after discontinuation of treatment and removal of islet transplants. A therapy aimed at the selective elimination of autoreactive cells and the reeducation of T cells, when combined with control of glycemia, is thus able to effect an apparent cure of established type 1 diabetes in the NOD mouse.J. Clin. Invest.108:63–72 (2001). DOI:10.1172/JCI200112335.

Authors

Shinichiro Ryu, Shohta Kodama, Kazuko Ryu, David A. Schoenfeld, Denise L. Faustman

×

Figure 7

Options: View larger image (or click on image) Download as PowerPoint
Roles of TNF-α and MHC class I peptide complexes in reversal of diabetes...
Roles of TNF-α and MHC class I peptide complexes in reversal of diabetes in NOD mice. (a) Effect of TNF-α on the survival of spleen cells derived from a control C57 mouse or from untreated or successfully treated NOD female mice. (b) Effect of TNF-α treatment of splenocytes from diabetic NOD mice on the adoptive transfer of disease and the inability of splenocytes from successfully treated NOD mice to transfer disease. Young male NOD mice were irradiated and then injected with diabetic NOD female splenocytes either immediately after their isolation (left panel, dashed lines) or after incubation for 24 hours in the absence (left panel, solid lines) or presence (middle panel) of TNF-α (20 ng/ml); alternatively, four irradiated hosts each received splenocytes from a different NOD donor with long-term normoglycemia restored by CFA and C57 spleen cell injections (right panel). (c) Flow cytometric analysis of the percentages of CD8+CD45RBhigh, CD8+CD62L+, and CD8+CD95+ cells among splenocytes of mice from various treatment groups. Diabetic NOD females were implanted intraperitoneally with alginate-encapsulated C57 islets. They then received no further treatment (group A), a single bilateral injection of CFA only (group B), or CFA treatment plus biweekly intravenous injections of splenocytes from normal C57 mice (group C), β2M–/–, TAP1–/– C57 mice (group D), or MHC class II–/– C57 mice (group E). Shaded bars represent C57 control mice (group F) or NOD mice that exhibited normoglycemia and disease reversal after removal of alginate-encapsulated islets (groups C and E); open bars represent untreated NOD mice (group A) or NOD mice subjected to treatments that did not result in disease reversal (groups B and D).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts