Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Footnotes
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Retraction Free access | 10.1172/JCI90689

Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism

Cullen M. Taniguchi, Kohjiro Ueki, and C. Ronald Kahn

Find articles by Taniguchi, C. in: PubMed | Google Scholar

Find articles by Ueki, K. in: PubMed | Google Scholar

Find articles by Kahn, C. in: PubMed | Google Scholar

Published November 1, 2016 - More info

Published in Volume 126, Issue 11 on November 1, 2016
J Clin Invest. 2016;126(11):4387–4387. https://doi.org/10.1172/JCI90689.
Copyright © 2016, American Society for Clinical Investigation
Published November 1, 2016 - Version history
View PDF

Related article:

Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism
Cullen M. Taniguchi, … , Kohjiro Ueki, C. Ronald Kahn
Cullen M. Taniguchi, … , Kohjiro Ueki, C. Ronald Kahn
Article Metabolism

Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism

  • Text
  • PDF
Abstract

Hepatic insulin resistance is a critical component in the development of type 2 diabetes mellitus. In many cases, insulin resistance in liver is associated with reduced expression of both major insulin receptor substrate (IRS) proteins, IRS-1 and IRS-2. To investigate the specific functions of IRS-1 and IRS-2 in regulating liver function in vivo, we developed an adenovirus-mediated RNA interference technique in which short hairpin RNAs (shRNAs) are used to knock down IRS-1, IRS-2, or both, by 70–80% in livers of WT mice. The knockdown of IRS-1 resulted in an upregulation of the gluconeogenic enzymes glucose-6 phosphatase and phosphoenolpyruvate carboxykinase, as well as a marked increase in hepatic nuclear factor–4 α. Decreased IRS-1 was also associated with a decrease in glucokinase expression and a trend toward increased blood glucose, whereas knockdown of IRS-2 resulted in the upregulation of lipogenic enzymes SREBP-1c and fatty acid synthase, as well as increased hepatic lipid accumulation. The concomitant injection of IRS-1 and IRS-2 adenoviral shRNAs resulted in systemic insulin resistance, glucose intolerance, and hepatic steatosis. The alterations in the dual-knockdown mice were associated with defective Akt activation and Foxo1 phosphorylation. Taken together, our results demonstrate that hepatic IRS-1 and IRS-2 have complementary roles in the control of hepatic metabolism, with IRS-1 more closely linked to glucose homeostasis and IRS-2 more closely linked to lipid metabolism.

Authors

Cullen M. Taniguchi, Kohjiro Ueki, C. Ronald Kahn

×

Original citation: J Clin Invest. 2005;115(3):718–727. doi:10.1172/JCI23187.

Citation for this retraction: J Clin Invest. 2016;126(11):4387. doi:10.1172/JCI90689.

At the request of the corresponding author, the JCI is retracting this article. The authors were recently made aware of duplicated bands in Figures 1B, 3C, and 4C. After an extensive internal review, it was discovered that these duplications were introduced during figure assembly. The authors have stated that experimental data generated in the lab from the same time period support the original conclusions of the study and that other studies have subsequently confirmed and extended the primary conclusions of the manuscript. However, in the interest of maintaining accuracy in the published scientific literature and because the initial figures were not up to the standards of the JCI, the authors wish to retract this article. The authors apologize for these errors.

Footnotes

See the related article beginning on page 718.

Version history
  • Version 1 (November 1, 2016): Print issue publication

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Footnotes
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts