Abstract

About 10% of Down syndrome (DS) infants are born with a transient myeloproliferative disorder (DS-TMD) that spontaneously resolves within the first few months of life. About 20%–30% of these infants subsequently develop acute megakaryoblastic leukemia (DS-AMKL). Somatic mutations leading to the exclusive production of a short GATA1 isoform (GATA1s) occur in all cases of DS-TMD and DS-AMKL. Mice engineered to exclusively produce GATA1s have marked megakaryocytic progenitor (MkP) hyperproliferation during early fetal liver (FL) hematopoiesis, but not during postnatal BM hematopoiesis, mirroring the spontaneous resolution of DS-TMD. The mechanisms that underlie these developmental stage–specific effects are incompletely understood. Here, we report a striking upregulation of type I IFN–responsive gene expression in prospectively isolated mouse BM- versus FL-derived MkPs. Exogenous IFN-α markedly reduced the hyperproliferation FL-derived MkPs of GATA1s mice in vitro. Conversely, deletion of the α/β IFN receptor 1 (Ifnar1) gene or injection of neutralizing IFN-α/β antibodies increased the proliferation of BM-derived MkPs of GATA1s mice beyond the initial postnatal period. We also found that these differences existed in human FL versus BM megakaryocytes and that primary DS-TMD cells expressed type I IFN–responsive genes. We propose that increased type I IFN signaling contributes to the developmental stage–specific effects of GATA1s and possibly the spontaneous resolution of DS-TMD.

Authors

Andrew J. Woo, Karen Wieland, Hui Huang, Thomas E. Akie, Taylor Piers, Jonghwan Kim, Alan B. Cantor

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement