Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus
Federica Di Nicolantonio, Sabrina Arena, Josep Tabernero, Stefano Grosso, Francesca Molinari, Teresa Macarulla, Mariangela Russo, Carlotta Cancelliere, Davide Zecchin, Luca Mazzucchelli, Takehiko Sasazuki, Senji Shirasawa, Massimo Geuna, Milo Frattini, José Baselga, Margherita Gallicchio, Stefano Biffo, Alberto Bardelli
Federica Di Nicolantonio, Sabrina Arena, Josep Tabernero, Stefano Grosso, Francesca Molinari, Teresa Macarulla, Mariangela Russo, Carlotta Cancelliere, Davide Zecchin, Luca Mazzucchelli, Takehiko Sasazuki, Senji Shirasawa, Massimo Geuna, Milo Frattini, José Baselga, Margherita Gallicchio, Stefano Biffo, Alberto Bardelli
View: Text | PDF
Research Article

Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus

  • Text
  • PDF
Abstract

Personalized cancer medicine is based on the concept that targeted therapies are effective on subsets of patients whose tumors carry specific molecular alterations. Several mammalian target of rapamycin (mTOR) inhibitors are in preclinical or clinical trials for cancers, but the molecular basis of sensitivity or resistance to these inhibitors among patients is largely unknown. Here we have identified oncogenic variants of phosphoinositide-3-kinase, catalytic, α polypeptide (PIK3CA) and KRAS as determinants of response to the mTOR inhibitor everolimus. Human cancer cells carrying alterations in the PI3K pathway were responsive to everolimus, both in vitro and in vivo, except when KRAS mutations occurred concomitantly or were exogenously introduced. In human cancer cells with mutations in both PIK3CA and KRAS, genetic ablation of mutant KRAS reinstated response to the drug. Consistent with these data, PIK3CA mutant cells, but not KRAS mutant cells, displayed everolimus-sensitive translation. Importantly, in a cohort of metastatic cancer patients, the presence of oncogenic KRAS mutations was associated with lack of benefit after everolimus therapy. Thus, our results demonstrate that alterations in the KRAS and PIK3CA genes may represent biomarkers to optimize treatment of patients with mTOR inhibitors.

Authors

Federica Di Nicolantonio, Sabrina Arena, Josep Tabernero, Stefano Grosso, Francesca Molinari, Teresa Macarulla, Mariangela Russo, Carlotta Cancelliere, Davide Zecchin, Luca Mazzucchelli, Takehiko Sasazuki, Senji Shirasawa, Massimo Geuna, Milo Frattini, José Baselga, Margherita Gallicchio, Stefano Biffo, Alberto Bardelli

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 1,424 53
PDF 136 18
Figure 321 7
Table 120 0
Supplemental data 56 2
Citation downloads 109 0
Totals 2,166 80
Total Views 2,246
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts