Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Version history
  • Article usage
  • Citations to this article

Advertisement

CorrigendumNephrology Free access | 10.1172/JCI32738C1

Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor–1

Edward J. Weinman, Rajat S. Biswas, Quihong Peng, Lily Shen, Christina L. Turner, Xiaofei E, Deborah Steplock, Shirish Shenolikar, and Rochelle Cunningham

Find articles by Weinman, E. in: PubMed | Google Scholar

Find articles by Biswas, R. in: PubMed | Google Scholar

Find articles by Peng, Q. in: PubMed | Google Scholar

Find articles by Shen, L. in: PubMed | Google Scholar

Find articles by Turner, C. in: PubMed | Google Scholar

Find articles by E, X. in: PubMed | Google Scholar

Find articles by Steplock, D. in: PubMed | Google Scholar

Find articles by Shenolikar, S. in: PubMed | Google Scholar

Find articles by Cunningham, R. in: PubMed | Google Scholar

Published January 2, 2008 - More info

Published in Volume 118, Issue 1 on January 2, 2008
J Clin Invest. 2008;118(1):387–387. https://doi.org/10.1172/JCI32738C1.
© 2008 The American Society for Clinical Investigation
Published January 2, 2008 - Version history
View PDF

Related article:

Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor–1
Edward J. Weinman, … , Shirish Shenolikar, Rochelle Cunningham
Edward J. Weinman, … , Shirish Shenolikar, Rochelle Cunningham
Research Article

Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor–1

  • Text
  • PDF
Abstract

Parathyroid hormone (PTH), via activation of PKC and/or protein kinase A, inhibits renal proximal tubular phosphate reabsorption by facilitating the internalization of the major sodium-dependent phosphate transporter, Npt2a. Herein, we explore the hypothesis that the effect of PTH is mediated by phosphorylation of serine 77 (S77) of the first PDZ domain of the Npt2a-binding protein sodium-hydrogen exchanger regulatory factor–1 (NHERF-1). Using recombinant polypeptides representing PDZ I, S77 of NHERF-1 is phosphorylated by PKC but not PKA. When expressed in primate kidney epithelial cells (BSC-1 cells), however, activation of either protein kinase phosphorylates S77, suggesting that the phosphorylation of PDZ I by PKC and PKA proceeds by different biochemical pathways. PTH and other activators of PKC and PKA dissociate NHERF-1/Npt2a complexes, as assayed using quantitative coimmunoprecipitation, confocal microscopy, and sucrose density gradient ultracentrifugation in mice. Murine NHERF-1–/– renal proximal tubule cells infected with adenovirus-GFP-NHERF-1 containing an S77A mutation showed significantly increased phosphate transport compared with a phosphomimetic S77D mutation and were resistant to the inhibitory effect of PTH compared with cells infected with wild-type NHERF-1. These results indicate that PTH-mediated inhibition of renal phosphate transport involves phosphorylation of S77 of the NHERF-1 PDZ I domain and the dissociation of NHERF-1/Npt2a complexes.

Authors

Edward J. Weinman, Rajat S. Biswas, Quihong Peng, Lily Shen, Christina L. Turner, Xiaofei E, Deborah Steplock, Shirish Shenolikar, Rochelle Cunningham

×

Original citation: J. Clin. Invest.117:3412-3420 (2007). doi:10.1172/JCI32738.

Citation for this erratum: J. Clin. Invest.118:387 (2008). doi:10.1172/JCI32738C1.

During the preparation of the manuscript, Guihong Peng’s name was misspelled in the author list. The correct author list appears above.

The authors regret the error.

Version history
  • Version 1 (January 2, 2008): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts