Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Version history
  • Article usage
  • Citations to this article

Advertisement

CorrigendumNeuroscience Free access | 10.1172/JCI30951C1

Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain

Yi Dai, Shenglan Wang, Makoto Tominaga, Satoshi Yamamoto, Tetsuo Fukuoka, Tomohiro Higashi, Kimiko Kobayashi, Koichi Obata, Hiroki Yamanaka, and Koichi Noguchi

Find articles by Dai, Y. in: PubMed | Google Scholar

Find articles by Wang, S. in: PubMed | Google Scholar

Find articles by Tominaga, M. in: PubMed | Google Scholar

Find articles by Yamamoto, S. in: PubMed | Google Scholar

Find articles by Fukuoka, T. in: PubMed | Google Scholar

Find articles by Higashi, T. in: PubMed | Google Scholar

Find articles by Kobayashi, K. in: PubMed | Google Scholar

Find articles by Obata, K. in: PubMed | Google Scholar

Find articles by Yamanaka, H. in: PubMed | Google Scholar

Find articles by Noguchi, K. in: PubMed | Google Scholar

Published October 1, 2007 - More info

Published in Volume 117, Issue 10 on October 1, 2007
J Clin Invest. 2007;117(10):3140–3140. https://doi.org/10.1172/JCI30951C1.
© 2007 The American Society for Clinical Investigation
Published October 1, 2007 - Version history
View PDF

Related article:

Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain
Yi Dai, … , Hiroki Yamanaka, Koichi Noguchi
Yi Dai, … , Hiroki Yamanaka, Koichi Noguchi
Research Article Neuroscience

Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain

  • Text
  • PDF
Abstract

Proinflammatory agents trypsin and mast cell tryptase cleave and activate PAR2, which is expressed on sensory nerves to cause neurogenic inflammation. Transient receptor potential A1 (TRPA1) is an excitatory ion channel on primary sensory nerves of pain pathway. Here, we show that a functional interaction of PAR2 and TRPA1 in dorsal root ganglion (DRG) neurons could contribute to the sensation of inflammatory pain. Frequent colocalization of TRPA1 with PAR2 was found in rat DRG neurons. PAR2 activation increased the TRPA1 currents evoked by its agonists in HEK293 cells transfected with TRPA1, as well as DRG neurons. Application of phospholipase C (PLC) inhibitors or phosphatidylinositol-4,5-bisphosphate (PIP2) suppressed this potentiation. Decrease of plasma membrane PIP2 levels through antibody sequestration or PLC-mediated hydrolysis mimicked the potentiating effects of PAR2 activation at the cellular level. Thus, the increased TRPA1 sensitivity may have been due to activation of PLC, which releases the inhibition of TRPA1 from plasma membrane PIP2. These results identify for the first time to our knowledge a sensitization mechanism of TRPA1 and a novel mechanism through which trypsin or tryptase released in response to tissue inflammation might trigger the sensation of pain by TRPA1 activation.

Authors

Yi Dai, Shenglan Wang, Makoto Tominaga, Satoshi Yamamoto, Tetsuo Fukuoka, Tomohiro Higashi, Kimiko Kobayashi, Koichi Obata, Hiroki Yamanaka, Koichi Noguchi

×

Original citation: J. Clin. Invest.117:1979-1987 (2007). doi:10.1172/JCI30951.

Citation for this corrigendum: J. Clin. Invest.117:3140 (2007). doi:10.1172/JCI30951C1.

During the preparation of the manuscript, the doses of ET-18-OCH3, U73122, and GF were incorrectly reported in the legend for Figure 3. The correct sentence appears below.

In some experiments, the bath solution was perfused with either a PLC inhibitor - ET-18-OCH3 (ET; 2 mM) or U73122 (2 mM) - or a PKC inhibitor, GF (0.5 mM or 10 mM) 120 seconds before SL-NH2 reapplication.

The authors regret the error.

Version history
  • Version 1 (October 1, 2007): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts