Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI1396

Chronic ethanol ingestion impairs alveolar type II cell glutathione homeostasis and function and predisposes to endotoxin-mediated acute edematous lung injury in rats.

F Holguin, I Moss, L A Brown, and D M Guidot

Atlanta VAMC and the Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30033, USA.

Find articles by Holguin, F. in: PubMed | Google Scholar

Atlanta VAMC and the Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30033, USA.

Find articles by Moss, I. in: PubMed | Google Scholar

Atlanta VAMC and the Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30033, USA.

Find articles by Brown, L. in: PubMed | Google Scholar

Atlanta VAMC and the Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30033, USA.

Find articles by Guidot, D. in: PubMed | Google Scholar

Published February 15, 1998 - More info

Published in Volume 101, Issue 4 on February 15, 1998
J Clin Invest. 1998;101(4):761–768. https://doi.org/10.1172/JCI1396.
© 1998 The American Society for Clinical Investigation
Published February 15, 1998 - Version history
View PDF
Abstract

Chronic alcohol abuse increases the incidence and mortality of the acute respiratory distress syndrome (ARDS) in septic patients. To examine a potential mechanism, we hypothesized that ethanol ingestion predisposes to sepsis-mediated acute lung injury by decreasing alveolar type II cell glutathione homeostasis and function. Lungs isolated from rats fed ethanol (20% in water for >/= 3 wk), compared with lungs from control-fed rats, had greater (P < 0. 05) edematous injury (reflected by nonhydrostatic weight gain) after endotoxin (2 mg/kg intraperitoneally) and subsequent perfusion ex vivo with n-formylmethionylleucylphenylalanine (fMLP, 10(-7) M). Ethanol ingestion decreased (P < 0.05) glutathione levels in the plasma, lung tissue, and lung lavage fluid, and increased (P < 0.05) oxidized glutathione levels in the lung lavage fluid. Furthermore, ethanol ingestion decreased type II cell glutathione content by 95% (P < 0.05), decreased (P < 0.05) type II cell surfactant synthesis and secretion, and decreased (P < 0.05) type II cell viability, in vitro. Finally, treatment with the glutathione precursors S-adenosyl-L-methionine and N-acetylcysteine in the final week of ethanol ingestion significantly reduced lung edema during perfusion ex vivo. We conclude that ethanol ingestion in rats alters alveolar type II cell glutathione levels and function, thereby predisposing the lung to acute edematous injury after endotoxemia. We speculate that chronic alcohol abuse in humans predisposes to ARDS through similar mechanisms.

Version history
  • Version 1 (February 15, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts