Advertisement
Article tools
  • View PDF
  • Cite this article
  • E-mail this article
  • Send a letter
  • Information on reuse
  • Standard abbreviations
  • Article usage
Author information
Need help?

Research Article

The mitogen-activated protein kinase pathway can mediate growth inhibition and proliferation in smooth muscle cells. Dependence on the availability of downstream targets.

K E Bornfeldt, J S Campbell, H Koyama, G M Argast, C C Leslie, E W Raines, E G Krebs and R Ross

Department of Pathology, University of Washington, Seattle, Washington 98195, USA. bornf@u.washington.edu

Published August 15, 1997

Activation of the classical mitogen-activated protein kinase (MAPK) pathway leads to proliferation of many cell types. Accordingly, an inhibitor of MAPK kinase, PD 098059, inhibits PDGF-induced proliferation of human arterial smooth muscle cells (SMCs) that do not secrete growth-inhibitory PGs such as PGE2. In striking contrast, in SMCs that express the inducible form of cyclooxygenase (COX-2), activation of MAPK serves as a negative regulator of proliferation. In these cells, PDGF-induced MAPK activation leads to cytosolic phospholipase A2 activation, PGE2 release, and subsequent activation of the cAMP-dependent protein kinase (PKA), which acts as a strong inhibitor of SMC proliferation. Inhibition of either MAPK kinase signaling or of COX-2 in these cells releases them from the influence of the growth-inhibitory PGs and results in the subsequent cell cycle traverse and proliferation. Thus, the MAPK pathway mediates either proliferation or growth inhibition in human arterial SMCs depending on the availability of specific downstream enzyme targets.

Advertisement
Advertisement