Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118622

Nitric oxide synthase (NOS3) and contractile responsiveness to adrenergic and cholinergic agonists in the heart. Regulation of NOS3 transcription in vitro and in vivo by cyclic adenosine monophosphate in rat cardiac myocytes.

L Belhassen, R A Kelly, T W Smith, and J L Balligand

Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

Find articles by Belhassen, L. in: PubMed | Google Scholar

Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

Find articles by Kelly, R. in: PubMed | Google Scholar

Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

Find articles by Smith, T. in: PubMed | Google Scholar

Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

Find articles by Balligand, J. in: PubMed | Google Scholar

Published April 15, 1996 - More info

Published in Volume 97, Issue 8 on April 15, 1996
J Clin Invest. 1996;97(8):1908–1915. https://doi.org/10.1172/JCI118622.
© 1996 The American Society for Clinical Investigation
Published April 15, 1996 - Version history
View PDF
Abstract

Cardiac myocytes express the nitric oxide synthase isoform originally identified in constitutive nitric oxide synthase cells (NOS3), which mediates the attenuation by muscarinic cholinergic agonists of beta-adrenergic stimulation of L-type calcium current and contractility in these cells. However, calcium current and contractility in these cells. However, the reciprocal regulation of NOS3 activity in myocytes by agents that elevate cAMP has not been reported. In this study, we show that NOS3 and mRNA and protein levels in cardiac myocytes are reduced both in vitro after treatment with cAMP elevating drugs, and in vivo after 3 d of treatment with milrinone, a type III cAMP phosphodiesterase inhibitor. This effect on NOS3 activity by cAMP is cell type specific because treatment of cardiac microvascular endothelial cells in vitro or in vivo did not decrease NOS3 mRNA or protein in these cells. NOS3 downregulation in myocytes appeared to be at the level of transcription since there was no modification of NOS3 mRNA half-life by agents that increase intracellular cAMP. To determine the functional effects of NOS3 downregulation, we examined the contractile responsiveness of isolated electrically paced ventricular myocytes, isolated from animals that had been treated in vivo with milrinone, to the beta-adrenergic agonist isoproterenol and the muscarinic cholinergic agonist carbamylcholine. There was no difference in baseline contractile function in cells that had been pretreated with cAMP elevating agents compared to controls, but cells exposed to milrinone in vivo exhibited an accentuation in their contractile responsiveness to isoproterenol compared to controls and a loss of responsiveness to carbamylcholine. Downregulation of myocyte NOS3 by sustained elevation of cAMP may have important implications for the regulation of myocardial contractile state by the autonomic nervous system.

Version history
  • Version 1 (April 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts