Advertisement
Article tools
  • View PDF
  • Cite this article
  • E-mail this article
  • Send a letter
  • Information on reuse
  • Standard abbreviations
  • Article usage
Author information
Need help?

Research Article

Effects of rhIGF-I administration on bone turnover during short-term fasting.

S K Grinspoon, H B Baum, S Peterson and A Klibanski

Neuroendocrine Unit, Massachusetts General Hospital, Boston 02114, USA.

Published August 1995

Insulin-like growth factor-I (IGF-I) is a nutritionally dependent bone trophic hormone which stimulates osteoblast function and collagen synthesis in vivo and in vitro. We hypothesized that in the fasting state, IGF-I levels would decline significantly and would establish a model in which we could investigate the effects of IGF-I administration on bone turnover. We therefore studied 14 normal women ages 19-33 (mean, 24 +/- 4 [SD] years) during a complete 10-d fast. After 4 d of fasting, subjects were randomized to receive rhIGF-I or placebo subcutaneously twice a day for 6 d. Bone turnover was assessed using specific markers of formation (osteocalcin and type I procollagen carboxyl-terminal propeptide [PICP]) and resorption (pyridinoline, deoxypyridinoline, type I collagen crosslinked N-telopeptide [N-telopeptide] and hydroxyproline). Serum levels of PICP and osteocalcin decreased from 143 +/- 52 to 60 +/- 28 ng/ml (P = 0.001) and from 7.6 +/- 5.4 to 4.2 +/- 3.1 ng/ml (P = 0.001) respectively with 4 d of fasting. Urinary excretion of pyridinoline and deoxypyridinoline decreased from 96 +/- 63 to 47 +/- 38 nmol/mmol creatinine (P < 0.05) and from 28 +/- 17 to 14 +/- 11 nmol/mmol creatinine (P < 0.05) respectively. Mean IGF-I levels decreased from 310 +/- 81 to 186 +/- 78 ng/ml (P = 0.001). In the second part of the experimental protocol, serum osteocalcin and PICP levels increased 5- and 3-fold, respectively with rhIGF-I administration and were significantly elevated compared with the placebo group at the end of treatment (20.9 +/- 17.3 vs. 5.9 +/- 6.4 ng/ml for osteocalcin [P < 0.05] and 188 +/- 45 vs. 110 +/- 37 ng/ml for PICP [P < 0.05]). In contrast, all four markers of bone resorption, including urinary pyridinoline, deoxypyridinoline, N-telopeptide and hydroxyproline were unchanged with rhIGF-I administration. This report is the first to demonstrate that bone turnover falls rapidly with acute caloric deprivation in normal women. RhIGF-I administration uncouples bone formation in this setting by significantly increasing bone formation, but not resorption. These data suggest a novel use of rhIGF-I to selectively stimulate bone formation in states of undernutrition and low bone turnover.

Browse pages

Click on an image below to see the page. View PDF of the complete article

Advertisement
Advertisement